TD II.b Probabilités et Extrêmes

TD II : Espérances et lois conditionnelles (supplément)

22 Septembre 2025-26 Septembre 2025

- Master I Isifar
- Probabilités

Exercice 1 (Questionnaire).

Soient $(\Omega; \mathcal{A}; P)$ un espace de probabilité, X et Y des v.a.r., T une v.a. à valeurs dans \mathbb{R}^d . Que peut-on dire, sous réserve d'hypothèses d'intégrabilité adéquates, des espérances conditionnelles suivantes:

- 1. $\mathbb{E}(f(T) \mid T)$ avec $f : \mathbb{R}^d \to \mathbb{R}$ borélienne,
- 2. $\mathbb{E}(X \mid T)$ avec $X \sigma(T)$ -mesurable,
- 3. $\mathbb{E}(XY \mid T)$ avec $X \sigma(T)$ -mesurable,
- 4. $\mathbb{E}(f(X) \mid T)$ avec $f: \mathbb{R}^d \to \mathbb{R}$ borélienne, X et T indépendantes,
- 5. $\mathbb{E}(\mathbb{E}(X \mid T))$,
- 6. $\mathbb{E}[S_{10}|S_8]$ lorsque $S_n = \sum_{i=1}^n X_i$ et les $(X_i)_{i\geq 1}$ sont i.i.d., 7. $\mathbb{E}[S_{31} \mid X_1]$ lorsque $S_n = \sum_{i=1}^n X_i$ et les $(X_i)_{i\geq 1}$ sont i.i.d., 8. $\mathbb{E}[\Pi_4 \mid \Pi_2]$ lorsque $\Pi_n = \prod_{i=1}^n X_i$ et les $(X_i)_{i\geq 1}$ sont i.i.d., 9. $\mathbb{E}[\phi(X,Y) \mid Y]$ lorsque X et Y sont indépendantes,

- 10. $\mathbb{E}[f(S_2 + X_8) \mid S_2]$, lorsque $S_n = \sum_{i=1}^n X_i$ et les $(X_i)_{i \geq 1}$ sont i.i.d.

Exercice 2.

On considère un processus de Galton-Watson de loi de branchement

$$\mathbb{P}(\xi = 0) = \mathbb{P}(\xi = 2) = 1/2.$$

issu à la génération 0 d'un unique individu ancestral. On note \mathbb{Z}_n la taille de la population à la génération n.

Exprimer $\mathbb{E}[(Z_2-1)^2 \mid Z_1]$.