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Warm up

Exclamation-Triangle 2025-10-02

A short undergraduate course on Probability theory in an applied

mathematics curriculum

ThisProbability course is a core part ofMaster ISIFAR, a curriculum that delivers training
in Statistics, Mathematical Finance, and Computer Science at Université Paris Cité. The
Probability course is related to other courses from the same curriculum.

1. Statistique M1
2. Mathématiques financières M1
3. Mathématiques financières M2
4. Apprentissage statistique M2

This list is not exhaustive.
This course is geared towards applications. We borrow examples and applications of

probability theory from statistics, computer science, big data engineering. As we have a
limited amount of time, we sweep a lot of dust under the carpet. We take for granted key
results from integration andmeasure theory. Nevertheless, we build on rigorous definitions,
state and invoke theorems in a consistent way.

• Homepage of the course.
• Moodle page of the course.

Prerequisites

This course builds on two Licence-level courses:

• Probabilités Licence 3
• Intégration

1

http://master.math.u-paris.fr/annee/m1-mi/
http://u-paris.fr
https://master.math.u-paris.fr/modules/m1isifar-statistiques
https://master.math.u-paris.fr/modules/m1isifar-math-fi
https://master.math.u-paris.fr/modules/m2isifar-mathematiques-financieres/
https://master.math.u-paris.fr/modules/m2isifar-apprentissage-statistique/
https://s-v-b.github.io/MA1AY010
https://moodle.u-pariscite.fr/course/view.php?id=13045
http://licence.math.u-paris.fr/modules/l3-maths-mfa-maths-s5-probas/
http://licence.math.u-paris.fr/modules/l3-maths-mfa-maths-s6-Integration/




Chapter 1

Introduction

In this chapter we survey the basic definitions of Probability Theory starting from a sim-
ple modeling problem from computer science. The notions are formally defined in next
chapters. The simple context allows us to carry out computations and to outline the kind
of results we will look for during the course: moments, tail bounds, law of large numbers,
central limit theorems, and possibly other kind of weak convergence results.

1.1 Hashing

Hashing is a computational technique that is used in almost every area of computing,
from databases to compilers through (big) datawarehouses. Every book on algorithms
contain a discussion of hashing, see for exampleIntroduction to Hashing by Jeff
Erickson.

Under idealized conditions, hashing 𝑛 items to 𝑚 values consists of applying a function
picked uniformly at random among the 𝑚𝑛 functions from 1, … , 𝑛 to 1, … , 𝑚. The perfor-
mance of a hashing method (how many cells have to be probed during a search operation?)
depends on the typical properties of such a random function.

It is convenient to think of the values in 1, … , 𝑚 as numbered bins and of the items as
𝑛 numbered balls. Picking a random function amounts to throw independently the 𝑛 balls
into the 𝑚 bins. The probability that a given ball falls into a given bin is 1/𝑚.

Questions around the random functions can be rephrased.

• How many empty bins on average?
• Distribution of the number of empty bins?
• How many bins with 𝑟 balls?
• What is the maximum number of balls in a single bin?

Have a look at the http://stephane-v-boucheron.fr/post/2019-09-02-idealizedhashing/
and download the notebook from there.

This toy yet useful model is an opportunity to recall basic notions of probability theory.
In the sequel, we call this framework the random alllocations experiment.

3
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CHAPTER 1. INTRODUCTION

Table 1.1

index 1 2 3 4 5 6 7 8 9 10
position 2 3 1 2 4 4 2 3 2 5

In Table 1.1, line 𝜔 represents the outcome of a random allocation with 𝑛 = 10, 𝑚 = 5:
𝜔4 = 2, 𝜔5 = 4, …

1.2 A Probability space

The set of outcomes is called the universe. In the random allocations setting it is the set
of 1, … , 𝑚-valued sequences of length 𝑚. This is also a function mapping {1, … , 𝑛} to
{1, … , 𝑚}. We denote a generic outcome by 𝜔. The 𝑖th element of 𝜔 is denoted by 𝜔𝑖. This
universe is denoted by Ω, here it is finite with cardinality 𝑚𝑛.

In this simple setting, the uniform probability distribution on the universe assigns to
each subset 𝐴 of Ω the probability |𝐴|/|Ω|. When the universe is finite or countable, all
subsets of the universe are events, assigning a probability to every subset of the universe is
not an issue.

Recall that a probability distribution 𝑃 maps a collection ℱ of subsets of the universe
(ℱ ⊆ 2Ω) to [0, 1] and satisfies:

1. 𝑃(∅) = 0
2. 𝑃(Ω) = 1
3. for any countable collection of pairwise disjoint events 𝐴1, 𝐴2, … , 𝑛, …,

𝑃(∪∞
𝑛=1𝐴𝑛) = ∑∞

𝑛=1 𝑃(𝐴𝑛)

See Section 2.3.
This entails 𝑃(𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑘) = ∑𝑘

𝑖=1 𝑃(𝐴𝑖) for all finite collection of pairwise
disjoint subsets 𝐴1, … , 𝐴𝑘.

For the domain of 𝑃 to be well-defined, the collection of subsets ℱ has to be closed
under countable unions, countable intersections and complementation, to contain the
empty set ∅ and the universe Ω. In words, it has to be a 𝜎-algebra, see Section 2.2.

Note that other probability distributions make sense on this simple universe. See for
example the balanced allocations scenario.

In the ballanced allocations scenario, the random functions from 1, … , 𝑛 to 1, … , 𝑚 are
constructed sequentially. We first construct 𝜔1 by picking a number uniformly at random
from 1, … , 𝑛. Now, assume we have constructed 𝜔1, … , 𝜔𝑖 for some 𝑖 < 𝑛. In order to
determine 𝜔𝑖+1, we pick uniformly at random two numbers from 1, … , 𝑛, say 𝑗 and 𝑘. We
compute

𝑐𝑗 = ∣{ℓ ∶ 1 ≤ ℓ ≤ 𝑖, 𝜔ℓ = 𝑗}∣ and 𝑐𝑘 = ∣{ℓ ∶ 1 ≤ ℓ ≤ 𝑖, 𝜔ℓ = 𝑘}∣ .

If 𝑐𝑗 < 𝑐𝑘, 𝜔𝑖+1 = 𝑗 otherwise 𝜔𝑖+1 = 𝑘.

ma1ay010 4 m1 isifar



1.3. RANDOM VARIABLES AND INDEPENDENCE

This iterative construction defines a (unique) probability distribution over {1, … , 𝑚}𝑛

that differs from the uniform probability distribution. It is non-trivial to show that it
achieves a non-trivial balancing guarantee for the size of the preimages induced by 𝜔.

1.3 Random variables and independence

Consider the real valued functions from Ω to ℝ defined by:

𝑋𝑖,𝑗(𝜔) = {
1 if 𝜔𝑖 = 𝑗
0 otherwise .

This function is a special case of a random variable see Section 2.5.
In the toy example outlined in Table 1.1, we have 𝑋4,1(𝜔) = 1, 𝑋5,1(𝜔) = 0, ....

Note that the definition of the random variable has nothing to do with the
probability distribution we have considered so far. There is nothing random
in a random variable. Moreover, a random variable is not a variable, it is a
function. You may question this terminology, but it has been sanctified by
tradition.

In the probability space (Ω, 2Ω,Pr), the distribution of the random variable 𝑋𝑖,𝑗 is a
Bernoulli distribution with parameter 1/𝑚.

Pr{𝑋𝑖,𝑗 = 1} = 1
𝑚

Pr{𝑋𝑖,𝑗 = 0} = 1 − 1
𝑚

,

see Section 5.1 for more on Bernoulli distributions. This comes from

Pr{𝜔 ∶ 𝑋𝑖,𝑗(𝜔) = 1} =
∣{𝜔 ∶ 𝑋𝑖,𝑗(𝜔) = 1}∣

𝑚𝑛 = 𝑚𝑛−1

𝑚𝑛 = 1
𝑚

.

Recall that Pr{𝑋𝑖,𝑗 = 1} is a shorthand for Pr{𝜔 ∶ 𝑋𝑖,𝑗(𝜔) = 1}.
For a while, we fix some 𝑗 ∈ {1, … , 𝑚} and consider the collection of random variables

(𝑋𝑖,𝑗)𝑖≤𝑛.
For each 𝑖, we can define events (subsets of Ω) from the value of 𝑋𝑖,𝑗:

{𝜔 ∶ 𝑋𝑖,𝑗(𝜔) = 1}

{𝜔 ∶ 𝑋𝑖,𝑗(𝜔) = 0}

and together with Ω, ∅ they form the collection 𝜎(𝑋𝑖,𝑗) of events that are definable
from 𝑋𝑖,𝑗.

Recall the definition of independent events or rather the definition of a collection of

independent events.
A collection of events 𝐸1, 𝐸2, … , 𝐸𝑘 from (Ω, 2Ω) is independent with respect to Pr if

for all 𝐼 ⊆ {1, … , 𝑛},

m1 isifar 5 ma1ay010



CHAPTER 1. INTRODUCTION

Table 1.2

Occupancy score 1 2 3 4 5
Number of bins 1 4 2 2 1

Occupancy scores

Pr{ ∩𝑖∈𝐼 𝐸𝑖} = ∏
𝑖∈𝐼

Pr{𝐸𝑖}

One can check that for each fixed 𝑗 ≤ 𝑚, (𝑋𝑖,𝑗)𝑖≤𝑛 is a collection of independent random

variables under Pr. By this we mean that each collection 𝐸1, 𝐸2, … , 𝐸𝑛 of events where
𝐸𝑖 ∈ 𝜎(𝑋𝑖,𝑗) for each 𝑖 ∈ {1, … , 𝑛}, 𝐸1, 𝐸2, … , 𝐸𝑛 is an independent collection of events
under Pr.

The notion of independence is a cornerstone of probability theory, see Chapter Chap-
ter 8.

Concretely, this means that for any sequence 𝑏1, … , 𝑏𝑛 ∈ {0, 1}𝑛 (a possible outcome
for the sequence of random variables 𝑋1,𝑗, 𝑋2,𝑗, … , 𝑋𝑛,𝑗), we have

Pr{
𝑛

⋀
𝑖=1

𝑋𝑖,𝑗(𝜔) = 𝑏𝑖} =
𝑛

∏
𝑖=1

Pr{𝑋𝑖,𝑗(𝜔) = 𝑏𝑖}

=
𝑛

∏
𝑖=1

( 1
𝑚

)
𝑏𝑖

(1 − 1
𝑚

)
1−𝑏𝑖

= ( 1
𝑚

)
∑𝑛

𝑖=1 𝑏𝑖

(1 − 1
𝑚

)
𝑛−∑𝑛

𝑖=1 𝑏𝑖

.

Observe that the outcome of the sequence𝑋𝑖,𝑗 for 𝑖 ∈ 1, … , 𝑛 is 𝑏1, … , 𝑏𝑛 only depends
on ∑𝑛

𝑖=1 𝑏𝑖 = 𝑌𝑗. This greatly simplifies computations.
We are interested in the number of elements from 1, … , 𝑛 that are mapped (allocated)

to 𝑗 through the random function 𝜔. Let us define

𝑌𝑗(𝜔) =
𝑛

∑
𝑖=1

𝑋𝑖,𝑗(𝜔) .

In the toy example described in Table 1.1, 𝑌3(𝜔) = 4 while 𝑌5(𝜔) = 1 and 𝑌4(𝜔) = 0:
In the probability space (Ω, 2Ω,Pr), the random variable 𝑌𝑗 is distributed as a sum of

independent, identically distributed Bernoulli random variables, that is, according to a
Binomial distribution, see Section 5.1.

Pr{𝑌𝑗 = 𝑟} = (𝑛
𝑟
)𝑝𝑟(1 − 𝑝)𝑛−𝑟 with 𝑝 = 1

𝑚

for 𝑟 ∈ 0, … , 𝑛.
Indeed, recall
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Pr{𝑌𝑗 = 𝑟} = ∑
𝜔∶𝑌𝑗(𝜔)=𝑟

Pr{𝜔}

= ∑
𝜔∶𝑌𝑗(𝜔)=𝑟

( 1
𝑚

)
𝑟

(1 − 1
𝑚

)
𝑛−𝑟

= ∣{𝜔 ∶ 𝜔 ∈ Ω, 𝑌𝑗(𝜔) = 𝑟}∣ × ( 1
𝑚

)
𝑟

(1 − 1
𝑚

)
𝑛−𝑟

= (𝑛
𝑟
) ( 1

𝑚
)

𝑟
(1 − 1

𝑚
)

𝑛−𝑟
.

For large 𝑛, 𝑚, this Binomial distribution tends to be concentrated around its mean
value or expectation

𝔼𝑌𝑗 =
𝑛

∑
𝑟=0

𝑟 × Pr{𝑌𝑗 = 𝑟} = 𝑛
𝑚

.

See Chapter 3 for a systematic approach to expectation, variance and higher moments,
based on Integration theory.

The last chapter ?@sec-chapConcentration is dedicated the development of tail bounds
for random variables like 𝑌𝑗 that are smooth functions of independent random variables.

For themoment recall that on a countable probability space, the expectation of random
variable 𝑍 can be defined as

𝔼𝑍 = ∑
𝜔∈Ω

Pr{𝜔} × 𝑍(𝜔)

provided the series is absolutely convergent.
This is illustratedbyFigure 1.1. In principle, a binomial randomvariablewithparameters

𝑛 = 5000 and 𝑝 = .001 can take any value between 0 and 5000. However, most (more than
95%) of the probability mass is supported by {1, … , 10}.

1.4 Convergences

If we let 𝑛, 𝑚 tend to infinity while 𝑛/𝑚 tends toward 𝑐 > 0, we observe that, for each
fixed 𝑟 ≥ 0 the sequence Pr{𝑌𝑗 = 𝑟} = (𝑛

𝑟)(1/𝑚)𝑟(1 − 1/𝑚)𝑛−𝑟 tends towards

e−𝑐 𝑐𝑟

𝑟!

which is the probability that a Poisson distributed random variable with expectation 𝑐equals
𝑟 (see Section 5.2 for more on Poisson distributions).

This is an instance of the law of rare events, a special case of convergence in distribution

see Chapter 15.
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Figure 1.1: Probability mass function of Binomial(5000,0.001)

The ability to approximate a Poisson distribution using an appropriate Binomial distri-
bution is illustrated in Figure 1.2. The difference between the probability mass functions
of the Binomial distributions with parameters 𝑛 = 250, 𝑚 = 0.02, and 𝑛 = 2500, 𝑚 =
0.002 and the Poisson distribution with parameter 5 is small. If we chose parameters
𝑛 = 2500, 𝑚 = 0.002, the difference between Binomial and Poisson is barely visible.

The proximity between Binomial(𝑛, 𝜆/𝑛) and Poisson(𝜆) can be quantified in different
ways. A simple one consists in computing

∑
𝑥∈ℕ

∣𝑝𝑛,𝜆/𝑛(𝑥) − 𝑞𝜆(𝑥)∣

where 𝑝𝑛,𝜆/𝑛 (resp. 𝑞𝜆) stands for Binomial (resp. Poisson). This quantity is called the vari-
ation distance between the two probability distributions. A general definition is provided
in Chapter 15. In Figure 1.3, this distance between Binomial distribution with parameters
𝑛, 5/𝑛 and Poisson(5) is plotted against 𝑛 (beware logarithmic scales). This plot suggests
that the variation distance decays like 1/𝑛. This is checked in Chapter 15.

In the probability space (Ω, 2Ω,Pr), the random variables 𝑌𝑗, 𝑌 ′
𝑗 , 𝑗 ≠ 𝑗′ are not inde-

pendent. In order to show that 𝑌𝑗, 𝑌 ′
𝑗 , 𝑗 ≠ 𝑗′ are not independent, it suffices to check that

two events 𝐸𝑗, 𝐸𝑗′ are not independent with 𝜔 ∈ 𝐸𝑗 being a function of 𝑌𝑗 and 𝜔 ∈ 𝐸𝑗′

being a function of 𝑌𝑗′ (later, we will concisely say 𝐸𝑗 ∈ 𝜎(𝑋𝑗) or 𝐸𝑗 being 𝑌𝑗-measurable).
Choose 𝐸𝑗 = {𝜔 ∶ 𝑌𝑗(𝜔) = 𝑟} and 𝐸𝑗′ = {𝜔 ∶ 𝑌𝑗′(𝜔) = 𝑟}.
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Figure 1.2: Probability mass functions of Binomial(250,0.02) (left), Binomial(2500,0.002)
(middle) and Poisson(5) (right)
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Figure 1.3: Law of rare events: distance between Binomial(𝑛, 5/𝑛) and Poisson(5) as a
function of 𝑛
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$K_{n,1}$ $K_{n,2}$ $K_{n,4}$
2 2 1

Pr(𝐸𝑗) = (𝑛
𝑟
) ( 1

𝑚
)

𝑟
(1 − 1

𝑚
)

𝑛−𝑟

Pr(𝐸𝑗 ∩ 𝐸𝑗′) = (𝑛
𝑟
) × (𝑛 − 𝑟

𝑟
) ( 1

𝑚
)

2𝑟
(1 − 2

𝑚
)

𝑛−2𝑟

Pr(𝐸𝑗 ∩ 𝐸𝑗′)
Pr(𝐸𝑗) × Pr(𝐸𝑗′)

=
(1 − 2

𝑚)𝑛−2𝑟

(1 − 1
𝑚)2𝑛−2𝑟

((𝑛 − 𝑟)!)2

𝑛!(𝑛 − 2𝑟)!
≠ 1 .

Hence, if we define

𝐾𝑛,𝑟(𝜔) =
𝑚

∑
𝑗=1

𝕀𝑌𝑗(𝜔)=𝑟

as the number of elements of 1, … , 𝑚 that occur exactly 𝑟 times in 𝜔, the random variable
𝐾𝑛,𝑟 is not described as a sum of independent random variables. Nevertheless, it is possible
to gather a lot of information about its moments and distribution. If we let again 𝑛, 𝑚
tend to infinity while 𝑛/𝑚 tends toward 𝑐 > 0, we observe that the distribution of 𝐾𝑛,𝑟/𝑚
tends to concentrate around e−𝑐 𝑐𝑟

𝑟! . This is an example of convergence in probability, see
Chapter 14.

Now, if we consider the sequence of recentered and rescaled random variables (𝐾𝑛,𝑟 −
𝔼𝐾𝑛,𝑟)/√var(𝐾𝑛,𝑟), we observe that its distribution function (see Section 2.7) converges
pointwise towards the distribution function of the Gaussian distribution.

1.5 Summary

In this chapter, we investigated a toy stochastic model: random allocations. This toy model
was motivated by the analysis of hashing, a widely used technique from Computer science.
To perform the analysis, we introduced notation and notions from probability theory:

• Universe,
• Events,
• 𝜎-algebras,
• Probability distributions,
• Preimages,
• Random variables,
• Expectation,
• Variance,
• Independence of events,
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• Independence of random variables,
• Binomial distribution,
• Poisson distribution.

Through numerical simulations, we got a feeling of several important phenomena:

• Law of rare events: approximation of Poisson distribution by certain Binomial
distributions.

• Lawof large numbers for normalized sumsof identically distributed randomvariables
that are not independent.

• Central limit theorems for normalized and centered sums of identically distributed
random variables that are not independent

At that point, our elementary approach did not provide us with the notions and tools
that make possible the rigorous analysis of these phenomena.
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Chapter 2

Amodicum of measure theory

2.1 Roadmap

Performing stochastic modeling in a comfortable way requires consistent foundations and
notation. In this chapter, we set the stage for further development. Probability theory
started as the interaction between combinatorics and games of chance (XVIIth century).
At that time, the set of outcomes was finite, and it was legitimate to think that any set
of outcomes had a well-defined probability. When mathematicians started to perform
stochastic modeling in different branches of sciences (astronomy, thermodynamics, genetics,
…), they had to handle uncountable sets of outcomes. Designing a sound definition of
what a probability distribution is, took time. Progress in integration and measure theory
during the XIXth century and the early decades of the XXth century led to the modern,
measure-theoretical foundation of probability theory.

2.2 Universe, powerset and 𝜎-algebras

A universe is a set (of possible outcomes) we decide to call a universe. The universe is often
denoted by Ω. Generic elements of Ω (outcomes) are denoted by 𝜔.

Example 2.1. If we think of throwing a dice as a random phenomenon, the set of outcomes
is the set of labels on the faces Ω = {1, 2, 3, 4, 5, 6}. If we are throwing two dices, the set of
outcomes is made of couples of labels Ω′ = {(1, 1), (1, 2), (1, 3), … , (6, 6)} = Ω2.

Example 2.2. In the idealized hashing problem (Section 1.1), the universe is the set of
functions from 1, … , 𝑛 to 1, … , 𝑚. The size of the universe is 𝑚𝑛.

A universe may or may not be finite or countable. If the universe is countable, all its
subsets may be called events. Events are assigned probabilities. If the universe is countable, it
is possible to assign a probability to each of its subsets. When the universe is not countable
(for example ℝ), Assigning a probability to all subsets is not possible. We have to restrict
the collection of subsets in order to assign probabilities to the collection members in a
consistent way.
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CHAPTER 2. A MODICUM OF MEASURE THEORY

In the sequel 2Ω denotes the collection of all subsets of Ω (the powerset of Ω).
A sensible collection of events has to be a 𝜎-algebra.

Definition 2.1 (𝜎-algebra”). Given a set Ω, a collection 𝒢 of subsets of Ω (𝒢 ⊆ 2Ω) is
called a 𝜎-algebra (a sigma algebra) iff

• 𝒢 is closed under 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 union
• ∅ ∈ 𝒢
• 𝒢 is closed under complementation (𝐴 ∈ 𝒢 ⇒ 𝐴𝑐 = Ω ∖ 𝐴 ∈ 𝒢)

What the smallest 𝜎-algebra (with respect to set inclusion) that contains subset 𝐴 of Ω?
The next proposition shows that 𝜎-algebras are stable under countable set-theoretical

operations. We could have replaced countable union by countable intersection in the
definition of 𝜎-algebras. This is consequence of De Morgan’s laws:

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 and(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐

A 𝜎-algebra of subsets is closed under countable intersections.

Proof. For 𝐴 ⊆ Ω, let 𝐴𝑐 = Ω ∖ 𝐴. Let 𝐴1, … , 𝐴𝑛, … belong to 𝜎-algebra 𝒢 of subsets of
Ω. For each 𝑛, 𝐴𝑐

𝑛 ∈ 𝒢, by definition of 𝜎-algebra,

∩𝑛𝐴𝑛 = (( ∩𝑛 𝐴𝑛)𝑐)
𝑐

= ( ∪𝑛 𝐴𝑐
𝑛)

𝑐
De Morgan .

By definition of a 𝜎-algebra, ∪𝑛𝐴𝑐
𝑛 ∈ 𝒢, and for the same reason, ( ∪𝑛 𝐴𝑐

𝑛)
𝑐

∈ 𝒢.

The next proposition allows us to talk about the smallest 𝜎-algebra containing a collec-
tion of subsets, this leads to the notion of generated 𝜎-algebra.

The intersection of two 𝜎-algebras of subsets of Ω is a 𝜎-algebra of subsets of Ω.

Proof. Let𝒢 and𝒢′ be two𝜎-algebras of subsets ofΩ. The intersectionof the two𝜎-algebras
is

{𝐴 ∶ 𝐴 ⊆ Ω, 𝐴 ∈ 𝒢, 𝐴 ∈ 𝒢′} .

Indeed, the intersection of a possibly uncountable collection of 𝜎-algebras is a 𝜎-algebra
(check this). Because of this property, the notion of a 𝜎-algebra generated by a collection of
subsets is well-founded.

Generated 𝜎-algebra

Given a collection 𝒞 of subsets of Ω, there exists a unique smallest 𝜎-algebra containing all
subsets in 𝒞, it is called the 𝜎-algebra generated by ℋ and denoted by 𝜎(𝒞).
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Exercise 2.1. Check the preceding proposition.

Example 2.3. Consider we are throwing a dice, Ω = {1, … , 6}, let

ℋ = {{1, 3, 5}} .

This is a collection made of one event (the outcome is odd). The algebra generated by ℋ is

𝜎(ℋ) = {{1, 3, 5}, {2, 4, 6}, ∅, Ω} .

Two kinds of 𝜎-algebras play a prominent role in a basic probability course:

1. the powerset of countable or finite sets.
2. the Borel 𝜎-algebras of topological spaces.

Definition 2.2 (Borel sigma-algebra). The Borel 𝜎-algebra over ℝ is the 𝜎-algebra
generated by open sets. It is denoted by ℬ(ℝ).

This definition works for every topological space. Recall that a topology on a set 𝐸
is defined by a collection ℰ of open sets. This collection is defined by the following list of
properties:

• ∅, 𝐸 ∈ ℰ
• A (possibly uncountable) union of elements of ℰ (open sets) belongs to ℰ (is an open
set)

• A finite intersection of open sets is an open set.

In the usual topology on ℝ, a set 𝐴 is open if for any 𝑥 ∈ 𝐴, there exists some 𝑟 > 0
such that ]𝑥 − 𝑟, 𝑥 + 𝑟[⊆ 𝐴. Any interval of the form ]𝑎, 𝑏[ is open (these are the so-called
open intervals).

This topology can be generalized to any finite dimension ℝ𝑑.

Exercise 2.2. Consider the 𝜎-algebra generated by open-intervals of ℝ. Is it the Borel
𝜎-algebra?

Exercise 2.3. Consider the 𝜎-algebra generated by open-intervals of ℝ with rational
bounds. Is it the Borel 𝜎-algebra?

Exercise 2.4. Consider any metric space (𝐸, 𝑑). The metric 𝑑 defines a topology on
𝐸. Does the Borel 𝜎-algebra on (𝐸, 𝑑) coincide with the 𝜎-algebra generated by open
balls 𝐵(𝑥, 𝑟) = {𝑦 ∶ 𝑦 ∈ 𝐸, 𝑑(𝑥, 𝑦) < 𝑟}?

We are now ready to set the stage of stochastic modeling. The playground always
consists of a measurable space.
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Definition 2.3 (Measurable space). Auniverse Ω endowedwith a 𝜎-algebra of subsets
ℱ is called a measurable space. It is denoted by (Ω, ℱ).

Example 2.4.

• If Ω is a countable or finite set, then (Ω, 2Ω) is a measurable space.
• If Ω = ℝ, then (ℝ, ℬ(ℝ)) is a measurable space.

So far, we have not talked about probability theory, but, we are now equipped to define
probability distributions and to manipulate them.

2.3 Probability distributions

A probability distribution maps a 𝜎-algebra to [0, 1]. It is an instance of a more general
concept called ameasure. We state or recall important concept of measure theory. The key
idea underneath the elaboration of measure theory is that we should refrain from trying to
measure all subsets of a universe (unless this universe is countable). Attempts tomeasure all
subsets ofℝ lead to paradoxes and of little practical use. Measure theory starts by recognizing
the desirable properties any useful measure should possess, then measure theory builds
objects satisfying these properties on as large as possible 𝜎-algebras of events, for example
on Borel 𝜎-algebras.

This motivates the definition of 𝜎-additivity.

Definition 2.4 (Sigma-additivity). Given Ω and 𝒜 ⊆ 2Ω, a function 𝜇 mapping 𝒜
to [0, ∞) is said to be 𝜎-additive on 𝒜 if for any countable collection of pairwise
disjoint subsets (𝐴𝑛)𝑛∈ℕ ∈ 𝒜, with ∪𝑛𝐴𝑛 ∈ 𝒜 we have

𝜇(∪𝑛∈ℕ𝐴𝑛) = ∑
𝑛∈ℕ

𝜇(𝐴𝑛) .

Note that if ℱ is a 𝜎-algebra, ( ∪𝑛∈ℕ 𝐴𝑛) ∈ ℱ. 𝜎-additivity fits well with 𝜎-algebras,
but it makes sense to define 𝜎-additivity with respect to more general collections of subsets.

Proposition 2.1. Given Ω, a 𝜎-algebra 𝒜 ⊆ 2Ω, a 𝜎-_additive_function 𝜇 mapping

𝒜 to [0, ∞) satisfies

a. for any increasing sequence (𝐴𝑛)𝑛∈ℕ of elements of 𝒜

lim
𝑛

𝜇(𝐴𝑛) = 𝜇 (∪𝑛𝐴𝑛)

b. for any decreasing sequence (𝐴𝑛)𝑛∈ℕ of elements of 𝒜

lim
𝑛

𝜇(𝐴𝑛) = 𝜇 (∩𝑛𝐴𝑛)
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c.

𝜇(∅) = 0

Proof. a.) Let 𝐵1 = 𝐴1, and 𝐵𝑛+1 = 𝐴𝑛+1 ∖ 𝐴𝑛 for each 𝑛, then (𝐵𝑛)𝑛 is a sequence
of pairwise disjoints elements of 𝒜. We have ∪𝑛𝐵𝑛 = ∪𝑛𝐴𝑛 and and by 𝜎-additivity,
𝜇(∪𝑛𝐴𝑛) = ∑𝑛 𝜇(𝐵𝑛)

∑
𝑛≤𝑚

𝜇(𝐵𝑛) = 𝜇 (∪𝑛≤𝑚𝐵𝑚) = 𝜇(𝐴𝑚)

Hence lim𝑚→∞ 𝜇(𝐴𝑚) = ∑𝑛∈ℕ 𝜇(𝐵𝑛) = 𝜇(∪𝑛𝐴𝑛)
b.) The second statement is proved in a similar way.
c.) Let (𝐴𝑛)𝑛 be such that 𝐴𝑛 = ∅ for each 𝑛, this is a sequence of pairwise disjoint

elements of 𝒜, by 𝜎-additivity, we have

∑
𝑛∈ℕ

𝜇(∅) = 𝜇(∅)

which implies 𝜇(∅) = 0.

Definition 2.5 (Positive measure). Given a measurable space (Ω, ℱ), a 𝜎-additive
function 𝜇 mapping ℱ to [0, ∞) is called a positive measure over (Ω, ℱ).
The tuple (Ω, ℱ, 𝜇) is called a measure space.

By Proposition 2.1, for any positive measure 𝜇, we have 𝜇(∅) = 0. When 𝜇(Ω) is finite,
𝜇 is said to be finite positive measure.

Exercise 2.5. Let Ω = {0, 1}∗ the set of infinite sequences of 0 and 1 (indexed
from 1). Let ℱ𝑛 ⊆ 2Ω be the 𝜎-algebra generated by events of the following form:
{𝜔 ∶ 𝜔 ∈ Ω, 𝜔𝑖 = 1} for 1 ≤ 𝑖 ≤ 𝑛.

• Define a 𝜎-additive function on (Ω, ℱ𝑛).
• What is the 𝜎-algebra generated by ∪𝑛≥1ℱ𝑛?
• Can you define a 𝜎-additive function on (Ω, 𝜎(∪𝑛≥1ℱ𝑛)).

A positive measure 𝜇 is not necessarily a probability distribution. For example, the
counting measure 𝜇 on ℕ satisfies 𝜇(𝐴) = |𝐴| for all 𝐴 ⊆ ℕ, so we have 𝜇(ℕ) = ∞.

Definition 2.6 (Probability distribution). Given a measurable space (Ω, ℱ), a func-
tion 𝜇 mapping ℱ to [0, ∞) is a probability distribution over (Ω, ℱ) if

1. 𝜇 is a positive measure on (Ω, ℱ) and
2. 𝜇(Ω) = 1.
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Exercise 2.6. If you think (ℝ, 2ℝ) is a measurable space, define a 𝜎-additive measure
on it. Try even to define a probability measure.

Remark 2.1. The notion of 𝜎-additivity is strictly stronger than finite additivity. Assuming
the Axiom of Choice (as usual when working in Analysis or Probability), there exists a
function 𝜇 thatmap 2ℕ to [0, 1], that is additive (𝜇(𝐴∪𝐵) = 𝜇(𝐴)+𝜇(𝐵) for all 𝐴, 𝐵, 𝐴∩
𝐵 = ∅), zero on all finite subsets of ℕ and such that 𝜇(ℕ) = 1. Such a function is not
𝜎-additive.

2.4 Lebesgue measure

We take the existence of Lebesgue’s measure for granted. This is the content of the next
theorem.

Theorem 2.1 (Existence of Lebesgue’s measure). There exists a unique 𝜎-additive
measure ℓ on (ℝ, ℬ(ℝ)) such that ℓ((𝑎, 𝑏]) = 𝑏 − 𝑎 for all finite 𝑎 < 𝑏.

Theorem 2.1 is typical of statements of measure theory. It defines a complex object (a
measure) by its trace on a simple collection of sets (intervals).

The proof of Theorem 2.1 can be cut in several meaningful pieces. First define a length
function on intervals. Show that this function can be extended to an additive function on
finite union, finite intersection and complements of intervals. Then check that the extension
is in fact 𝜎-additive on the closure of intervals under finite set-theoretical operations (which
is not a 𝜎-algebra).

Once this additive extension is constructed, use Carathéodory’s extension theorem
below to prove that the length function can be extended to a 𝜎-additive function on the
𝜎-algebra generated by intervals (the Borel 𝜎-algebra).

Then it remains to check that the extension is unique. This can be done by a generating
set argument, for example themonotone class Lemma Lemma 2.4.

Theorem 2.2 (Carathéodory’s extension theorem”). Let 𝒜 ⊆ 2Ω. Assume 𝒜 contains

∅, Ω, and is closed under finite unions, and complementation. Assume 𝜌 ∶ 𝒜 → [0, ∞]
is 𝜎-additive on 𝒜.

Then there exists a measure 𝜇 on 𝜎(𝒜) such that 𝜇(𝐴) = 𝜌(𝐴) for all 𝐴 ∈ 𝒜.

The Lebesque measure existence theorem guarantees that we can define the uniform
probability distribution over a finite interval [𝑎, 𝑏]. If we denote Lebesgue measure by ℓ,
the uniform probability distribution over [𝑎, 𝑏] assign probability

𝑃(𝐴) = ℓ(𝐴)
𝑏 − 𝑎

= ℓ(𝐴)
ℓ([𝑎, 𝑏])

to any 𝐴 ∈ ℬ(ℝ) ∩ [𝑎, 𝑏].
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2.5. MEASURABLE FUNCTIONS AND RANDOM VARIABLES

The uniform distribution over ([0, 1], ℬ([0, 1])) looks like an academic curiosity with
no practical utility. This superficial opinion should be dispelled. Using a generator for the
uniform distribution, it is possible to build a generator for any probability distribution
over (ℝ, ℬ(ℝ)). This can be done using a device called the quantile transform. In this sense,
the uniform distribution is the mother of all distribution.

An outcome 𝜔 of the uniform distribution is a real number. How does a typical
outcome look? A real number 𝜔 ∈ [0, 1] has binary expansions: 𝜔 = ∑∞

𝑖=1 𝑏𝑖2−1 with
𝑏𝑖 ∈ {0, 1}. What is the probability there is a unique binary expansion? First, checkwhether
this probability is well-defined. Assuming the binary expansion is unique, 𝜔 is said to be
normal if lim𝑛

1
𝑛 ∑𝑛

𝑖=1 𝑏𝑖(𝜔) = 1/2. Is the probability of obtaining a normal number
well-defined? If yes, compute it.

Exercise 2.7. Check that ℬ(ℝ) ∩ [𝑎, 𝑏] = {𝐴 ∩ [𝑎, 𝑏] ∶ 𝐴 ∈ ℬ(ℝ)} is the 𝜎-algebra
generated by the trace of the usual topology of ℝ on [𝑎, 𝑏].

The Lebesgue existence theorem can be extended. Indeed, any sensible definition of
the length of an interval can serve as a starting point.

Recall that a real function is CADLAG if it is right-continuous everywhere, and has
left-limits everywhere.

The next Theorem can be established in a way that parallels the construction of
Lebesgue’s measure.

Theorem 2.3. Any non-decreasing CADLAG function 𝐹 on ℝ defines a 𝜎-additive
measure 𝜇 on (ℝ, ℬ(ℝ)) that satisfies:

𝜇((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎)

We recover Lebesgue’s existence Theorem by taking 𝐹(𝑥) = 𝑥.
If we focus on functions𝐹 that satisfy lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1, The-

orem Theorem 2.3 defines probability distributions through their cumulative distribution

functions (more on this topic in Section 2.7).

Exercise 2.8. Do we really to assume that the function 𝐹 has left-limits in Theorem
Theorem 2.3?

2.5 Measurable functions and random variables

So far, we only talked probability and measure of sets (events). As stochastic modeling is at
the root of quantitative analysis, we introduce the notion of measurable function. This
allows us handle numerical functions that map outcomes to ℝ or ℝ𝑑.

Not every numerical function is measurable. To define what we call a measurable
function, we need the notion of inverse image or preimage.
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Definition 2.7 (Preimage). Let 𝑓 be a function from 𝒳 to 𝒴, we denote by 𝑓−1 the
function that maps 2𝒴 to 2𝒳 defined by

𝑓−1 ∶ 2𝒴 → 2𝒳

𝐵 ↦ 𝑓−1(𝐵) = {𝑥 ∶ 𝑥 ∈ 𝒳, 𝑓(𝑥) ∈ 𝐵} .

The set 𝑓−1(𝐵) is called the preimage or inverse image of 𝐵 under 𝑓.

Note that 𝑓−1 does not denote the inverse of function 𝑓 which may not be injective. In
this course, 𝑓−1 is a set function from the powerset of the codomain of 𝑓 to the powerset of
the domain of 𝑓. The inverse function if it exists (or the generalized inverse function) is
denoted by 𝑓←. The inverse function, when it exists, maps 𝑓(𝒳) ⊆ 𝒴 to 𝒳.

Example 2.5. Recall the idealized hashing setting from Section 1.1. Let Ω denote the set of
functions from 1, … , 𝑛 to 1, … , 𝑚 (assume 𝑛 ≤ 𝑚). For 𝜔 ∈ Ω (𝜔 is function, but it is also
a 1, … , 𝑚-valued sequence of length 𝑛), let 𝑓(𝜔) be the number of values in 1, … , 𝑚 that
have no occurrence in 𝜔 (the number of empty bins in the allocation defined by 𝜔). The
function 𝑓 is a numerical function that maps Ω = {1, … , 𝑚}𝑛 . For 𝐵 ∈ ℕ, 𝑓−1(𝐵) is the
subset of allocations which have 𝑘 empty bins, 𝑘 ∈ 𝐵.

The preimage operation works well with set-theoretical operations.
Elementary properties ofmeasurable functions follow fromproperties of inverse images.

Inverse image preserves set-theoretical operations.

Proposition 2.2. Let 𝑓 ∶ 𝐸 ↦ 𝐹, then for 𝐴, 𝐵, 𝐴1, … , 𝐴𝑛, … ⊆ 𝐹,

𝑓−1(𝐴 ∪ 𝐵) = 𝑓−1(𝐴) ∪ 𝑓−1(𝐵)
𝑓−1(𝐴 ∩ 𝐵) = 𝑓−1(𝐴) ∩ 𝑓−1(𝐵)

𝑓−1(∪𝑛∈ℕ𝐴𝑛) = ∪𝑛∈ℕ𝑓−1(𝐴𝑛)
𝑓−1(∩𝑛∈ℕ𝐴𝑛) = ∩𝑛∈ℕ𝑓−1(𝐴𝑛)

𝑓−1(𝐹 ∖ 𝐴) = 𝑓−1(𝐹) ∖ 𝑓−1(𝐴)

Exercise 2.9. Check Proposition Proposition 2.2 from Section 2.7

Taking the preimages of elements of a 𝜎-algebra defines a 𝜎-algebra.

Exercise 2.10. Let (Ω, ℱ) and (Ω′, 𝒢) be two measurable spaces. Let 𝑓 map Ω to Ω′,
prove that

ℋ = {𝑓−1(𝐵) ∶ 𝐵 ∈ 𝒢}
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is a 𝜎-algebra of subsets of 𝑓−1(Ω′).

Definition 2.8 (Measurable functions). Let (Ω, ℱ) and (Ω′, 𝒢) be two measurable
spaces. A function 𝑓 ∶ Ω → Ω′ is said to beℱ/𝒢-measurable iff for𝐵 ∈ 𝒢, 𝑓−1(𝐵) ∈
ℱ.

Under which condition on ℋ is 𝑓 ℱ/𝒢-measurable?

Example 2.6. Recall the idealized hashing scenario from Section 1.1.

Exercise 2.11. Check that if Ω is a topological space and ℱ the associated Borelian
𝜎-algebra, then any continuous function from Ω to ℝ is measurable.

Exercise 2.12. If Ω = ℝ𝑑 is the Borel 𝜎-algebra, is it the smallest 𝜎-algebra that makes
all continuous functions measurable?

Proposition 2.3. The pointwise limit of measurable functions is ameasurable function:

if (𝑓𝑛)𝑛 is a sequence of measurable functions from (Ω, ℱ) to (𝒳, 𝒢), and 𝑓𝑛 → 𝑓
pointwise, then 𝑓 is a measurable function.

Exercise 2.13. Prove Proposition Proposition 2.3

Proposition 2.4. The sum of measurable functions is a measurable function: if 𝑓, 𝑔
are measurable functions from (Ω, ℱ) to (ℝ, ℬ(ℝ)), then 𝑎𝑓 + 𝑏𝑔 is a measurable

function for all 𝑎, 𝑏 ∈ ℝ.

Exercise 2.14. Prove Proposition Proposition 2.4

Proposition 2.5. The composition of measurable functions is a measurable function:

if 𝑓 is a measurable function from (Ω, ℱ) to (𝒳, 𝒢), and 𝑔 is a measurable function

from (𝒳, 𝒢) to (𝒴, ℋ), then 𝑔 ∘ 𝑓 (𝑔 ∘ 𝑓(𝜔) = 𝑔(𝑓(𝜔)) for all 𝜔) is a measurable

function from (Ω, ℱ) to (𝒴, ℋ).

Exercise 2.15. Prove Proposition Proposition 2.5
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2.6 TheMonotone class theorem

The monotone class theorem or lemma is a powerful example of the generating class ar-
guments that can be used to prove that two probability measures or maybe two 𝜎-finite
measures are equal.

Definition 2.9 (𝜋-class). A collection 𝒢 of subsets of Ω is said to be a 𝜋-class if:

• Ω ∈ 𝒢
• it is stable/closed by finite intersection

𝐴, 𝐵 ∈ 𝒢 ⇒ 𝐴 ∩ 𝐵 ∈ 𝒢 .

A 𝜎-algebra is a 𝜋 class, but the converse is false.

Definition 2.10 (Monotone class). A collection ℳ of subsets of Ω is said to be a
monotone class or a 𝜆-system if it satisfies the following properties:

• Ω ∈ ℳ
• If 𝐴, 𝐵 ∈ ℳ, and 𝐴 ⊆ 𝐵 then 𝐵 ∖ 𝐴 ∈ ℳ
• If 𝐴𝑛 ∈ ℳ and 𝐴𝑛 ⊆ 𝐴𝑛+1 for every 𝑛 ∈ ℕ then lim𝑛 𝐴𝑛 = ∪𝑛∈ℕ𝐴𝑛 ∈ ℳ.

A 𝜎-algebra is a 𝜆-system.
The intersection of a collection of 𝜆-systems is a 𝜆-system. Hence, it makes sense to talk

about the smallest 𝜆-system containing a collection of sets.
The next easy proposition makes 𝜆-system very useful when we want to check that two

probability distributions are equal.

Proposition 2.6. The class of sets over which two probability distributions coincide is

a 𝜆-system.

Proof. Let (Ω, ℱ) be a measurable space. Let 𝑃 , 𝑄 be two probability distributions over
(Ω, ℱ). Let 𝒞 ⊆ ℱ be defined by

𝒞 = {𝐴 ∶ 𝐴 ∈ ℱ, 𝑃(𝐴) = 𝑄(𝐴)} .

By the very definition of measures we have 𝑃(Ω) = 𝑄(Ω), hence Ω ∈ 𝒞.
If 𝐴 ⊆ 𝐵 both belong to 𝒞, again by the very definition of measures,

𝑃(𝐵 ∖ 𝐴) = 𝑃(𝐵) − 𝑃(𝐴) = 𝑄(𝐵) − 𝑄(𝐴) = 𝑄(𝐵 ∖ 𝐴) ,

hence, 𝐵 ∖ 𝐴 ⊆ 𝒞.
Let 𝐴1 ⊆ 𝐴2 ⊆ 𝐴𝑛 ⊆ … be a non-decreasing sequence of elements of 𝒞, again by the

very definition of measures,
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𝑃(∪𝑛𝐴𝑛) = lim
𝑛

↑ 𝑃(𝐴𝑛) = lim
𝑛

↑ 𝑄(𝐴𝑛) = 𝑄(∪𝑛𝐴𝑛) .

Hence 𝒞 is closed by monotone limits.

Exercise 2.16. What happens if we consider the collections of measurable sets over
which two measures are equal? What happens if we assume that the two measures
are finite?

Definition 2.11 (𝜎-finite measures). A measure 𝜇 on (Ω, ℱ) is 𝜎-finite iff there exists
(𝐴𝑛)𝑛 with Ω ⊆ ∪𝑛𝐴𝑛 and 𝜇(𝐴𝑛) < ∞ for each 𝑛.

Finite measures (this encompasses probability measures) are 𝜎-finite. Lebesguemeasure
is 𝜎-finite. The counting measure on ℝ is not 𝜎-finite.

What happens if we only assume that the two measures are 𝜎-finite?

Theorem 2.4 (Monotone class lemma). If 𝒜 is a 𝜋-systen in Ω and ℳ a 𝜆-system
in Ω such that 𝒜 ⊆ ℳ, then the 𝜎-algebra generated by 𝒜, 𝜎(𝐴), is the smallest

𝜆-system larger than 𝒜:

𝜎(𝒜) ⊆ ℳ .

Proof. Let ℳ denote the intersection of all monotone classes that contain tyhe 𝜋-system 𝒜.
As a 𝜎-algebra is a monotone class (a 𝜆-system), we have ℳ ⊆ 𝜎(𝒜), the only point that
has to be checked is 𝜎(𝒜) ⊆ ℳ. It is enough to check that ℳ is indeed a 𝜎-algebra.

In order to check that ℳ is a 𝜎-algebra, it is enough to check that it is closed under
finite union or equivalently under finite intersection.

For each 𝐴 ∈ 𝒜, let ℳ𝐴 be defined by

ℳ𝐴 = {𝐵 ∶ 𝐵 ∈ ℳ, 𝐴 ∩ 𝐵 ∈ ℳ} .

Remember that 𝒜 is a 𝜋-system, and 𝒜 ⊆ ℳ, we have 𝒜 ⊆ ℳ𝐴. To show that
ℳ = ℳ𝐴, it suffices to show that ℳ𝐴 is a monotone class.

If (𝐵𝑛)𝑛 is an increasing sequence of elements of ℳ𝐴, then

(∪𝑛𝐵𝑛) ∩ 𝐴 = ∪𝑛( 𝐵𝑛 ∩ 𝐴⏟
∈ℳ

) ,

the right-hand-side belongs to ℳ since ℳ is monotone. Hence ℳ𝐴 is closed by
monotone increasing limit.

To check closure by complementation, let 𝐵 ⊆ 𝐶 with 𝐵, 𝐶 ∈ ℳ𝐴. As

𝐴 ∩ (𝐶 ∖ 𝐵) = ( 𝐴 ∩ 𝐶⏟
∈ℳ

) ∖ ( 𝐴 ∩ 𝐵⏟
∈ℳ

))

the closure of ℳ under complementation entails 𝐴 ∩ (𝐶 ∖ 𝐵) ∈ ℳ and 𝐶 ∖ 𝐵 ∈ ℳ𝐴.
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Now, let ℳ∘ be defined as

ℳ∘ = {𝐴 ∶ 𝐴 ∈ ℳ, ∀𝐵 ∈ ℳ, 𝐴 ∩ 𝐵 ∈ ℳ} .

We just established that 𝒜 ⊆ ℳ∘. Using the same line of reasoning allows us to check
that ℳ∘ is also a monotone class. This shows that ℳ∘ = ℳ.

We are done.

Combining Proposition 2.6 and the Monotone Class Lemma (Theorem 2.4) leads to
the next useful corollary.

If two probabilities 𝑃 , 𝑄 on (Ω, ℱ) coincide on a 𝜋-system 𝒜 that generates ℱ:

𝒜 ⊆ {𝐴 ∶ 𝐴 ∈ ℱ and 𝑃(𝐴) = 𝑄(𝐴)} and ℱ ⊆ 𝜎(𝒜)

then 𝑃 , 𝑄 coincide on ℱ.

2.7 Probability distributions on the real line

A probability distribution is a complex object: it maps a large collection of sets (a 𝜎-algebra)
to [0, 1]. Fortunately, it is possible to characterize a probability distribution by simpler
object. If we focus on probability distributions over (ℝ, ℬ(ℝ)), they can be characterized
by real functions on ℝ.

Definition 2.12 (Distribution function). Given a probability distribution 𝑃 on
(ℝ, ℬ(ℝ)), the distribution function 𝐹 of 𝑃 maps ℝ to [0, 1], it is defined by

𝑥 ↦ 𝐹(𝑥) = 𝑃(−∞, 𝑥].

A probability distribution defines a unique distribution function. What is perhaps
surprising is that a distribution function defines a unique probability distribution function.

Proposition 2.7. Let 𝐹 be a function from ℝ to [0, 1].
The function 𝐹 is the distribution function of a probability distribution on (ℝ, ℬ(ℝ)),
iff the following five properties are satisfied:

1. 𝐹 is non-decreasing,

2. 𝐹 is right-continuous

3. lim𝑦↗𝑥 𝐹(𝑦) exists at every 𝑥 ∈ ℝ (𝐹 has left-limits everywhere)

4. lim𝑥→−∞ 𝐹(𝑥) = 0
5. lim𝑥→∞ 𝐹(𝑥) = 1.

This is a rephrasing of Theorem 2.3.
Figure Figure 2.1 shows the cumulative distribution function of Poisson distributions

for different values of the parameter (see Sections Section 1.4 and Section 5.2 for more on
Poisson distributions). For parameter 𝜇, 𝐹𝜇(𝑥) = ∑𝑘≤𝑥 e

−𝜇 𝜇𝑘

𝑘! .
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Figure 2.1: Cumulative distribution functions for Poisson distributions with different
parameters. Observe that, apparently, 𝜇 ≤ 𝜈 ⇒ 𝐹𝜇 ≥ 𝐹𝜈. How would you establish this
domination property?

2.8 General random variables

A real random variable is neither a variable, nor random. A real random variable is a
measurable function from some measurable space to the real line endowed with the Borel
𝜎-algebra. There is nothing random in a random variable.

Definition 2.13 (Real valued random variable). Given a measurable space (Ω, 𝔽), a
mapping 𝑋 from Ω to ℝ is a real valued random variable such that for every 𝐵 ∈ ℬ(ℝ)
the inverse image of 𝐵:

𝑋−1(𝐵) = {𝜔 ∶ 𝜔 ∈ Ω, 𝑋(𝜔) ∈ 𝐵}

belongs to ℱ

Once a measurable space is endowed with a probability distribution, is it possible to
define the (probability) distribution of a random variable.

Definition 2.14. Given (Ω, ℱ, 𝑃) and a real valued random variable 𝑋, the law or
probability distribution of 𝑋, denoted by 𝑃 ∘ 𝑋−1, is the probability distribution on
(ℝ, ℬ(ℝ)) defined by
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(𝑃 ∘ 𝑋−1)(𝐵) = 𝑃(𝑋−1(𝐵)) for all 𝐵 ∈ ℬ(ℝ).

Randomvariablesmaybe vector-valued, function-valued, etc. General randomvariables
are defined as measurable functions between measurable spaces.

Definition 2.15 (Randomvariable). Given twomeasurable spaces (Ω, ℱ), and (Ω′, 𝒢)
a mapping 𝑋 from Ω to Ω′ is a ℱ/𝒢-random variable if for every 𝐵 ∈ 𝒢 the inverse
image of 𝐵:

𝑋−1(𝐵) = {𝜔 ∶ 𝜔 ∈ Ω, 𝑋(𝜔) ∈ 𝐵}

belongs to ℱ.

2.9 Bibliographic remarks

There are many beautiful books on Probability Theory. They are targetted at different
audiences. Somemay bemore suited to the students of the dual curriculumMathématiques-
Informatique. I found the following ones particularly useful.

Youssef (2019) is a clear and concise collection of class notes designed for aMaster I-level
Probability course that is substantially more ambitious than this minimal course.

Dudley (2002) delivers a self-contained course on Analysis and Probability. The book
can serve both as an introduction and a reference book. Beyond cautious and transparent
proofs, it contains historical notes that help understand the connections between landmark
results.

Pollard (2002) introduces measure and integration theory to an audience that has been
exposed to discrete probability theory and that is familiar with probabilistic reasoning.
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Chapter 3

Amodicum of integration

3.1 Roadmap

We start by reviewing basic definitions and results from integration theory. We follow
the measure-theoretic approach. First, we define simple functions, a subclass of piecewise
measurable functions in Section 3.2). Defining the integral of a simple function with respect
to a measure in Section 3.3) is straightforward. Some more work allows us to derive useful
properties: linearity, monotonicity, to name a few. In Section 3.3), we define the integral of
a non-negative measurable function as a supremum of integrals of simple functions. This
definition is theoretically sound and it lends itself to computations. Section 3.4) states three
convergence theorems culminating with the dominated convergence theorem.

3.2 Simple functions

The integral of a {0, 1}-valued measurable function 𝑓 with respect to a measure 𝜇 is defined

∫
Ω

𝑓d𝜇 = 𝜇(𝑓−1({1})) ,

alternatively

∫
Ω

𝕀𝐴d𝜇 = 𝜇(𝐴) for any measurable set 𝐴 .

The next step consists in defining the integral of finite linear combinations of {0, 1}-valued
measurable function 𝑓.

Definition 3.1 (Simple function). Let (Ω, ℱ) be a measurable space. The function
𝑓 ∶ Ω → ℝ is said to be simple iff

• 𝑓 takes finitely many values: ∣{𝑓(𝑥) ∶ 𝑥 ∈ Ω}∣ < ∞
• For each 𝑦 ∈ 𝑓(Ω) ⊂ ℝ, 𝑓−1({𝑦}) ∈ ℱ.
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A simple function defines a partition of Ω into finitely many measurable classes. The
simple function is constant on each class.

If 𝑓 is a simple function, then the 𝜎-algebra 𝑓−1(ℬ(ℝ)) is finite.
Simple functions are finite linear combinations of set characteristic (indicator) func-

tions.

• For each 𝐴 ∈ ℱ, 𝕀𝐴 is simple
• For any finite collection 𝐴1, … , 𝐴𝑛 of measurable subsets of Ω, any sequence

𝑐1, … , 𝑐𝑛 of real numbers, ∑𝑖≤𝑛 𝑐𝑖𝕀𝐴𝑖
is a simple function

• For any measurable function 𝑓 ∶ Ω → ℝ, and 𝑛 ∈ ℕ, the function 𝑔𝑛 defined by

𝑔𝑛(𝜔) = 𝑛 ∧ (−𝑛 ∨ ⌊𝑓(𝜔)⌋)

is simple.

The definition of the integral of a simple function with respect to a measure is straight-
forward: it is a finite sum.

Definition 3.2 (Integral of a simple function). Let (Ω, ℱ, 𝜇) be ameasured space. Let
𝑓 ∶ Ω → ℝ be a non-negative simple function which is defined by a finite partition of
Ω into measurable sets 𝐴1, 𝐴2, … , 𝐴𝑛 and numbers 𝑓1, … , 𝑓𝑛:

𝑓(𝜔) = ∑
𝑖≤𝑛

𝑓𝑖𝕀𝐴𝑖
(𝜔) .

The integral of 𝑓 with respect to 𝜇 is defined by

∫
Ω

𝑓d𝜇 = ∑
𝑖≤𝑛

𝑓𝑖𝜇(𝐴𝑖) .

Note that if measure 𝜇 is not finite, the integral of a simple non-negative function may
be infinite.

If 𝜇(𝐴𝑖) = ∞ and 𝑓𝑖 = 0, we agree on 𝑓𝑖𝜇(𝐴𝑖) = 0.
If we turn to signed simple functions, it is enough to notice than if 𝑓 is simple, so are

(𝑓)+ and (𝑓)− and to define ∫
Ω

𝑓d𝜇 as

∫
Ω

(𝑓)+d𝜇 − ∫
Ω

(𝑓)−d𝜇

provided at leat one of the two summands is finite.
Although they are simple, simple functions have interesting approximation capabilities.

Any non-negative measurable function can be approximated from below by non-negative
simple functions.
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Proposition 3.1 (Approximation of measurable functions). Let (Ω, ℱ) be a measur-

able space. Any non-negative measurable function 𝑓 ∶ Ω → ℝ is the monotone point-

wise limit of simple functions: there exists a sequence of simple function 𝑓1, … , 𝑓𝑛, …
such that for each 𝜔 ∈ Ω, the following holds:

𝑓1(𝜔) ≤ 𝑓2(𝜔) ≤ … ≤ 𝑓𝑛(𝜔) ≤ … ≤ 𝑓(𝜔)

and

lim
𝑛

𝑓𝑛(𝜔) = 𝑓(𝜔) .

Proof. Define 𝑓𝑛 as
𝑓𝑛(𝜔) = 𝑛 ∧ (2−𝑛⌊2𝑛𝑓(𝜔)⌋) .

As
⌊2𝑛𝑓(𝜔)⌋ ≤ 2𝑛𝑓(𝜔)

we have 𝑓𝑛(𝜔) ≤ 𝑓(𝜔) for all 𝜔.
The range of function 𝑓𝑛 is 𝑖×2−𝑛 for 𝑖 = 0, … , 𝑛×2𝑛. For each 𝑖 ∈ 0, … , (𝑛−1)×2𝑛

𝑓−1
𝑛 ({𝑖 × 2−𝑛}) = 𝑓−1([ 𝑖

2𝑛 , 𝑖 + 1
2𝑛 ))

which is in ℱ because 𝑓 is measurable and [ 𝑖
2𝑛 , 𝑖+1

2𝑛 ) ∈ ℬ(ℝ).

Likewise 𝑓−1
𝑛 ({𝑛}) = 𝑓−1([𝑛, ∞)) belongs to ℱ.

To check that 𝑓𝑛 ≤ 𝑓𝑛+1, we consider two cases.

1. 𝑓𝑛+1(𝜔) ≥ 𝑛. This entails 𝑓(𝜔) ≥ 𝑛 and thus 𝑓𝑛(𝜔) = 𝑛 < 𝑓𝑛+1(𝜔)
2. 𝑓𝑛+1(𝜔) = 𝑘+𝑖2−𝑛−1 for𝑘 < 𝑛 and 𝑖 < 2𝑛+1. This entails 𝑓𝑛(𝜔) = 𝑘+⌊𝑖/2⌋2−𝑛 ≤

𝑓𝑛+1(𝜔).

Finally if 𝑓(𝜔) ≤ 𝑛, 0 ≤ 𝑓(𝜔) − 𝑓𝑛(𝜔) ≤ 2−𝑛. This implies that lim𝑛 𝑓𝑛(𝜔) = 𝑓(𝜔)
for all 𝜔.

Figure Figure 3.1 illustrates the approximation capabilities of simple functions.

Proposition 3.2. If 𝑓, 𝑔 are two non-negative simple functions on (Ω, ℱ), then for

all 𝑎, 𝑏 ∈ [0, ∞), 𝑎𝑓 + 𝑏𝑔 and 𝑓𝑔 are non-negative simple functions.

Exercise 3.1. Check the proposition.

Proposition 3.3 (Monotonicity of integration of simple functions). If 𝑓, 𝑔 are two

non-negative simple functions and 𝜇 a non-negative measure on (Ω, ℱ) such that

𝜇{𝜔 ∶ 𝑓(𝜔) > 𝑔(𝜔)} = 0 .
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Figure 3.1: Approximation of the exponential function by simple functions 𝑛 ∧
(2−𝑛⌊2𝑛 exp(𝜔)⌋) for 𝑛 = 2, 3, 4.

(𝑓 is less of equal than 𝑔 𝜇-almost everywhere), then

∫ 𝑓 d𝜇 ≤ ∫ 𝑔 d𝜇 .

Exercise 3.2. Check Proposition 3.3

Proposition 3.4 (Linearity of integration of simple functions). If 𝑓, 𝑔 are two non-

negative simple functions and 𝜇 a non-negative measure on (Ω, ℱ), then for all

𝑎, 𝑏 ∈ [0, ∞),

∫ 𝑎𝑓 + 𝑏𝑔 d𝜇 = 𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇 .

Exercise 3.3. Check Proposition Proposition 3.4

3.3 Integration

Let 𝒮+ denote the set of non-negative simple functions on (Ω, ℱ).
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Definition 3.3 (Integration with respect to a measure). Let 𝑓 be a non-negative
measurable function on (Ω, ℱ, 𝜇), then for any 𝐴 ∈ ℱ, the integral of 𝑓 over 𝐴 with
respect to measure 𝜇 is defined by:

∫
𝐴

𝑓 d𝜇 = sup
𝑠∈𝒮+∶𝑠≤𝑓

∫
𝐴

𝑠 d𝜇

If the supremum is finite, the function is said to be integrable with respect to 𝜇, or to
be 𝜇-integrable.

Proposition 3.5 (Monotonicity of integration). If 𝑓, 𝑔 are two non-negative mea-

surable functions and 𝜇 a non-negative measure on (Ω, ℱ) such that

𝜇{𝜔 ∶ 𝑓(𝜔) > 𝑔(𝜔)} = 0 .

(𝑓 is less of equal than 𝑔 𝜇-almost everywhere), then

∫ 𝑓 d𝜇 ≤ ∫ 𝑔 d𝜇 .

Prove Proposition Proposition 3.5.

Proposition 3.6 (Linearity of integration). If 𝑓, 𝑔 are two non-negative measurable

functions and 𝜇 a non-negative measure on (Ω, ℱ), then for all 𝑎, 𝑏 ∈ [0, ∞),

∫ 𝑎𝑓 + 𝑏𝑔 d𝜇 = 𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇 .

Prove Proposition Proposition 3.6.
The integral of a signed measurable functions is defined by a decomposition argument.

Let 𝑓 be a measurable function and 𝑓 = (𝑓)+ − (𝑓)−, then

∫
Ω

𝑓d𝜇 = ∫
Ω

(𝑓)+d𝜇 − ∫
Ω

(𝑓)−d𝜇

provided at least one of ∫
Ω

(𝑓)+d𝜇 and ∫
Ω

(𝑓)−d𝜇 is finite.

3.4 Limit theorems

In this section, measurable functions are meant to be real-valued, and ℝ is endowed with
the Borel 𝜎-algebra (ℬ(ℝ)).

Theorems Theorem 3.1, Theorem 3.2, Theorem 3.3 below are the three pillars of integral
calculus.
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Theorem 3.1 (Monotone convergence theorem). Let (Ω, ℱ, 𝜇) be a measured space.

Let (𝑓𝑛)𝑛 be a non-decreasing sequence of non-negative measurable functions con-

verging towards 𝑓. Then

∫ lim
𝑛

↑ 𝑓𝑛 d𝜇 = lim
𝑛

↑ ∫ 𝑓𝑛 d𝜇.

The proof of the monotone convergence theorem boils down to the definition of
positive measure and property 𝜇(lim𝑛 ↑ 𝐴𝑛) = lim𝑛 ↑ 𝜇(𝐴𝑛).

Proof. Let function 𝑓 be defined by 𝑓(𝜔) = lim𝑛 ↑ 𝑓𝑛(𝜔) for all 𝜔 ∈ Ω. Note that if
𝑓(𝜔) = 0, then 𝑓𝑛(𝜔) = 0 for all 𝑛 ∈ ℕ.

The function 𝑓 is positive measurable. In order to prove the monotone convergence
theorem it is enough to check that for every non-negative simple function 𝑔 such that 𝑔 ≤ 𝑓
everywhere, for any 𝑎 ∈ [0, 1), the following holds:

𝑎 ∫ 𝑔 d𝜇 ≤ lim
𝑛

↑ ∫ 𝑓𝑛 d𝜇 . (3.1)

For each 𝑛 ∈ ℕ, define

𝐸𝑛 = {𝜔 ∶ 𝑓𝑛(𝜔) ≥ 𝑎𝑔(𝜔)}.

Note that as (𝑓𝑛)𝑛 is non-decreasing, the sequence (𝐸𝑛) is non-decreasing. Moreover,
if 𝑓(𝜔) > 0 as lim𝑛 ↑ 𝑓𝑛(𝜔) = 𝑓(𝜔) > 𝑎𝑓(𝜔) ≥ 𝑎𝑔(𝜔). Hence for all 𝜔 ∈ Ω, 𝕀𝐸𝑛

(𝜔) = 1
for all sufficiently large 𝑛 (beware there is no uniformity guarantee). We have

lim
𝑛

↑ 𝐸𝑛 = Ω .

Combining the different remarks, we have for all 𝑛, 𝕀𝐸𝑛
𝑎𝑔 ≤ 𝑓𝑛 everywhere. Mono-

tonicity of integration entails, for all 𝑛

∫ 𝕀𝐸𝑛
𝑎𝑔 d𝜇 ≤ ∫ 𝑓𝑛 d𝜇 ∀𝑛 .

Now, for each 𝑛, 𝕀𝐸𝑛
𝑎𝑔 is a non-negative simple function, and the sequence (𝕀𝐸𝑛

𝑎𝑔)𝑛
is a non-decreasing sequence of non-negative simple functions converging towards simple
function 𝑎𝑔.

Let 𝑔 = ∑𝑖≤𝑘 𝑐𝑖𝕀𝐴𝑖
where (𝐴𝑖)𝑖≤𝑘 is a finite partition of Ω into measurable subsets.

𝕀𝐸𝑛
𝑔 = ∑

𝑖≤𝑘
𝑐𝑖𝕀𝐴𝑖∩𝐸𝑛

.

Hence

∫ 𝕀𝐸𝑛
𝑎𝑔 d𝜇 = ∑𝑖≤𝑘 𝑐𝑖 ∫ 𝕀𝐴𝑖∩𝐸𝑛

d𝜇
= ∑𝑖≤𝑘 𝑐𝑖𝜇(𝐴𝑖 ∩ 𝐸𝑛) .

For each 𝑖 ≤ 𝑘, we have lim𝑛 ↑ 𝑐𝑖𝜇(𝐴𝑖 ∩ 𝐸𝑛) = 𝑐𝑖𝜇(𝐴𝑖). We have:
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∫ lim
𝑛

↑ 𝕀𝐸𝑛
𝑎𝑔 d𝜇 = lim

𝑛
↑ ∫ 𝕀𝐸𝑛

𝑎𝑔 d𝜇 .

This proves that Equation 3.1 holds for all 𝑎 ∈ [0, 1) and 𝑔 ∈ 𝒮+ with 𝑔 ≤ 𝑓:

∀𝑔 ∈ 𝒮+ with ∀𝑎 ∈ [0, 1),

Thenon-negativity assumptiomon 𝑓𝑛 is not necessary. It is enough to assume∫ 𝑓1d𝜇 >
−∞. Prove this.

Let (𝑓𝑛)𝑛 be a monotone decreasing sequence of non-negative measurable functions.
Let 𝑓 = lim𝑛 ↓ 𝑓𝑛 (check the existence of 𝑓).

Is it true that ∫ lim𝑛 ↓ 𝑓𝑛d𝜇 = lim𝑛 ↓ ∫ 𝑓𝑛d𝜇?.
Answer the same question assuming ∫ 𝑓1d𝜇 < ∞.
Answer the same question if 𝜇 is assumed to be a probability measure.

Theorem 3.2 (Fatou’s Lemma). Let (Ω, ℱ, 𝜇) be a measured space. Let (𝑓𝑛)𝑛 be a

sequence of non-negative measurable functions. Then

∫ lim inf
𝑛

𝑓𝑛d𝜇 ≤ lim inf
𝑛

∫ 𝑓𝑛d𝜇.

Proof. Define ℎ𝑛(𝜔) = inf𝑚≥𝑛 𝑓𝑛(𝜔). Each ℎ𝑛 is also non-negative and measurable. By
monotonicity,

∫ ℎ𝑛d𝜇 ≤ inf
𝑚≥𝑛

∫ 𝑓𝑚d𝜇 .

The sequence ℎ𝑛 is non-decreasing. And lim ↑ ℎ𝑛(𝜔) = lim inf 𝑓𝑛(𝜔) for all 𝜔 ∈ Ω.
For each 𝑛, by the monotone convergence theorem (Theorem 3.1):

∫ lim
𝑛

↑ ℎ𝑛d𝜇 = lim
𝑛

↑ ∫ ℎ𝑛d𝜇

so that
∫ lim inf

𝑛
𝑓𝑛d𝜇 = lim

𝑛
↑ ∫ ℎ𝑛d𝜇

and
∫ lim inf

𝑛
𝑓𝑛d𝜇 ≤ lim

𝑛
inf

𝑚≥𝑛
∫ 𝑓𝑚d𝜇 = lim inf

𝑛
∫ 𝑓𝑛d𝜇

Theorem 3.3 (Dominated convergence theorem). Let (Ω, ℱ, 𝜇) be a measured space.

Let (𝑓𝑛)𝑛 be a sequence of measurable functions that converges pointwise towards

function 𝑓. Assume that there exists a integrable function 𝑔 that dominates (𝑓𝑛)𝑛:

for all 𝑛, all 𝜔 ∈ Ω, |𝑓𝑛(𝜔)| ≤ 𝑔(𝜔). Then 𝑓 is integrable and
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∫ 𝑓d𝜇 = ∫ lim
𝑛

𝑓𝑛d𝜇 = lim
𝑛

∫ 𝑓𝑛d𝜇.

Proof. Let us first check that 𝑓 is integrable.
Observe that lim𝑛 |𝑓𝑛| = |𝑓| and thus lim inf |𝑓𝑛| = |𝑓|.
By Theorem 3.2,

∫ |𝑓|d𝜇 = ∫ lim inf
𝑛

|𝑓𝑛|d𝜇 ≤ lim inf
𝑛

∫ |𝑓𝑛|d𝜇 = ∫ |𝑔|d𝜇 < ∞ .

Now define ℎ𝑛 = inf𝑚≥𝑛 𝑓𝑚 and 𝑗𝑛 = sup
𝑚≥𝑛

𝑓𝑚. We have lim𝑛 ↑ ℎ𝑛 = 𝑓 and
lim𝑛 ↓ 𝑗𝑛 = 𝑓.

Note also that

∫ ℎ𝑛d𝜇 ≤ ∫ 𝑓d𝜇 ≤ ∫ 𝑗𝑛d𝜇 .

By monotone convergence ∫ ℎ𝑛d𝜇 ↑ ∫ 𝑓d𝜇 and ∫ 𝑗𝑛d𝜇 ↓ ∫ 𝑓d𝜇. This entails
lim∫ 𝑓𝑛d𝜇.

Let 𝑔 ∶ Ω × ℝ → ℝ be a function of two variables such that for each 𝑡 ∈ ℝ, 𝑔(⋅, 𝑡) is
measurable. Assume that for each 𝑡 ∈ ℝ, 𝑔(⋅, 𝑡) is 𝜇-integrable and that for each 𝜔 ∈ Ω,
𝑔(𝜔, ⋅) is differentiable. Define 𝐺(𝑡) = ∫

Ω
𝑔(𝜔, 𝑡)d𝜇(𝜔).

Is it always true that 𝐺 is differentiable at every 𝑡?
Provide sufficient conditions for 𝐺 to be differentiable and

𝐺′(𝑡) = ∫ 𝜕𝑔
𝜕𝑠

(𝜔, 𝑠)|𝑠=𝑡d𝜇(𝜔) .

3.5 Probability distributions defined by a density

Proposition 3.7. Let (Ω, ℱ) be a measurable space and 𝜇 be a 𝜎-finite measure over

(Ω, ℱ). Let 𝑓 be a non-negative measurable real function over (Ω, ℱ).
Let 𝜈 ∶ ℱ → [0, ∞) be defined by

𝜈(𝐴) = ∫ 𝕀𝐴𝑓 d𝜇 = ∫
𝐴

𝑓 d𝜇 .

𝜈 is a measure over (Ω, ℱ). The function 𝑓 is said to be a density of 𝜈 with respect to

𝜇.

Proof. The fact that 𝜈(∅) = 0 is immediate.
The fact that 𝜈 is 𝜎-additive follows from the monotone convergence theorem ( Theo-

rem 3.1).
If 𝐴1, … , 𝐴𝑛, … is a collection or pairwise disjoint measurable sets,
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𝜈(∪𝑛𝐴𝑛) = ∫ 𝕀∪𝑛𝐴𝑓 d𝜇
= ∫ ( lim𝑛 ∑𝑘≤𝑛 𝕀𝐴𝑘

)𝑓 d𝜇

= ∫ ( lim𝑛 ∑𝑘≤𝑛 𝕀𝐴𝑘
𝑓) d𝜇

= lim𝑛 ∑𝑘≤𝑛 ∫ 𝕀𝐴𝑘
𝑓 d𝜇

= lim𝑛 ∑𝑘≤𝑛 ∫ 𝕀𝐴𝑘
𝑓 d𝜇

= lim𝑛 ∑𝑘≤𝑛 𝜈(𝐴𝑘)
= ∑∞

𝑘=1 𝜈(𝐴𝑘) .

The fourth equality is justified by themonotone convergence theorem, others equalities
follow from the fact that we are handling non-negative series.

Let (𝐴𝑛)𝑛 be such that 𝐴𝑛 ∈ ℱ, 𝜇(𝐴𝑛) < ∞ for each 𝑛 and ∪𝑛𝐴𝑛 = Ω. For each 𝑛,
we have 𝜈(𝐴𝑛) = ∫

𝐴𝑛
𝑓 d𝜇 ≤ ∫

Ω
𝑓 d𝜇 < ∞. This proves that if 𝜇 is 𝜎-finite, so is 𝜈.

Exercise 3.4. Check that if 𝜇(𝐴) = 0, then 𝜈(𝐴) = 0 for every 𝐴 ∈ ℱ.

3.6 Bibliographic remarks

Dudley (2002) gives a self-contained and thorough treatment of measure and integration
theory with probability theory in mind.

Hiriart-Urruty&Lemaréchal (1993) is an excellent and accessible reference on convexity.
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Chapter 4

From integrals to expectation and
moments

4.1 Roadmap

In Section 4.2), we relate the notion of expectation of a random variable and the notion of
integral. The Transfer Theorem ( Theorem 4.1) is a key instrument in the characterization
of image distributions.

In Section 4.3, we state, prove and showcase Jensen’s inequality. This inequality allows
us to derive easy bounds on the expectation of convex functions of real random variables.
This is an opportunity to recall basics of convexity.

In Section 4.4, we pay special attention to the variance. We state several characteriza-
tions of the variance.

In Section 4.5
In Section 4.7

4.2 Expectation

The expectation of a real random variable is a (Lebesgue) integral with respect to a proba-
bility measure. We have to get familiar with probabilistic notation.

Definition 4.1. Let (Ω, ℱ, 𝑃) be a probability space. The random variable 𝑋 defined
on (Ω, ℱ) is𝑃-integrable if themeasurable function |𝑋| ∶ 𝜔 ↦ |𝑋(𝜔)| is𝑃-integrable:
we agree on

𝔼𝑋 = 𝔼𝑃𝑋 = ∫
𝒳

𝑋(𝜔)d𝑃(𝜔) = ∫ 𝑋d𝑃 .

Exercise 4.1. Check the consistency of this definition with the definition used in the
discrete setting.
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The next statement called the transfer formula can be used to compute the density of
an image distribution or to simplify the computation of an expectation.

Theorem 4.1 (Transfer formula). Let (𝒳, ℱ, 𝑃) be a probability space, (𝒴, 𝒢) a

measurable space, 𝑓 a measurable function from (𝒳, ℱ) to (𝒴, 𝒢). Let 𝑄 denote the

probability distribution that is the image of 𝑃 by 𝑓: 𝑄 = 𝑃 ∘ 𝑓−1.

Then for all measurable functions ℎ from (𝒴, 𝒢) to (ℝ, ℬ(ℝ))

𝔼[ℎ(𝑌 )] = ∫
𝒴

ℎ(𝑦)d𝑄(𝑦) = ∫
𝒳

ℎ ∘ 𝑓(𝑥)d𝑃(𝑥) = 𝔼ℎ ∘ 𝑓(𝑋)

if either integral is defined.

Proof. Assume first that ℎ = 𝕀𝐵 where 𝐶 ∈ 𝒢. Then

𝔼ℎ(𝑌 ) = ∫
𝒴

𝕀𝐵(𝑦) d𝑄(𝑦)
= 𝑄(𝐵)
= 𝑃 ∘ 𝑓−1(𝐵)
= 𝑃{𝑥 ∶ 𝑓(𝑥) ∈ 𝐵}

= 𝑃{𝑥 ∶ ℎ ∘ 𝑓(𝑥) = 1}
= ∫

𝒳
ℎ ∘ 𝑓(𝑥)d𝑃(𝑥)

= 𝔼ℎ ∘ 𝑓(𝑋) .

Then, by linearity, the transfer formula holds for all simple functions from 𝒴 to ℝ.
By the definition of the Lebesgue integral, the transfer formula holds for non-negative
measurable functions. The usual decomposition argument completes the proof.

It is clear that the expectation of a random variable only depends on the probability
distribution of the random variable.

4.3 Jensen's inequality

The tools from integration theory we have reviewed so far serve to compute or approximate
integrals and expectations. The next theorem circumvents computations and allows us to
compare expectations.

Jensen’s inequality is a workhorse of Information Theory, Statistics and large parts of
Probability Theory. It embodies the interaction between convexity and expectation.

We first introduce a modicum of convexity theory and notation.

Definition 4.2 (Lower semi-continuity). A function 𝑓 from some metric space 𝒳 to
ℝ is lower semi-continuous at 𝑥 ∈ 𝒳, if

lim inf
𝑥𝑛→𝑥

𝑓(𝑥𝑛) ≥ 𝑓(𝑥) .
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A continuous function is lower semi-continuous. But the converse is not true. If
𝐴 ⊆ 𝒳 is an open set, then 𝕀𝐴 is lower semi-continuous but, unless it is constant, it is not
continuous at the boundary of 𝐴.

Definition 4.3 (Convex subset). Let 𝒳 be a vector space, a subset 𝐶 ⊆ 𝒳 is said to
be convex if for all 𝑥, 𝑦 ∈ 𝐶, all 𝜆 ∈ [0, 1]:

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶 .

Let 𝐶 be a convex subset of some (topological real) vector space, let 𝐶 be the closure of
𝐶. Prove that 𝐶 and 𝐶 ∖ 𝐶 are convex.

A convex set may be neither closed nor open. Provide examples.
In the next definition, we consider functions from some vector space to ℝ ∪ {+∞}.

Definition 4.4 (Convex functions). Let 𝒳 be a (topological) vector space. Let 𝐶 ⊆ 𝒳
be a convex subset. A function 𝑓 from 𝒞 to ℝ ∪ {∞} is convex if for 𝑥, 𝑦 ∈ 𝐶, all
𝜆 ∈ [0, 1],

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) .

The domain of 𝑓 Dom(𝑓) is the subset of 𝐶 where 𝑓 is finite.

−2

0

2

4

−1 0 1 2

x

y

Figure 4.1: The function 𝑓 ∶ 𝑥 ↦ 𝕀𝑥<0|𝑥|+𝕀𝑥≥0𝑥2 is convex, continuous. It is differentiable
everywhere except at 𝑥 = 0. The dotted lines define affine functions that are below the
cruve 𝑦 = 𝑓(𝑥). The dotted lines define supporting hyperplanes for the epigraph of 𝑓.
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Exercise 4.2. Check that a convex function 𝑓 is lower semi-continuous iff sets {𝑥 ∶
𝑓(𝑥) ≤ 𝑡} are closed intervals for all 𝑡 ∈ ℝ.

The next result warrants that any convex lower semi-continuous has a dual representa-
tion. This dual representation is a precious tool when comparing expectation of random
variables.

Theorem 4.2 (Fenchel-Legendre duality). Let 𝑓 be a convex lower-semi-continuous

function on ℝ with a closed domain.

The dual function 𝑓∗ of 𝑓 is defined over ℝ by

𝑓∗(𝑦) = sup
𝑥∈Dom(𝑓)

𝑥𝑦 − 𝑓(𝑥) .

Then

� 𝑓∗ is convex

� 𝑓∗ is lower-semi-continuous

� If 𝑓∗(𝑦) = 𝑥𝑦 − 𝑓(𝑥) then 𝑦 is a sub-gradient of 𝑓 at 𝑥.
� If 𝑦 is a sub-gradient of 𝑓 at 𝑥, 𝑓∗(𝑦) = 𝑥𝑦 − 𝑓(𝑥).
� 𝑓 = (𝑓∗)∗, the dual function of the dual function equals the original function:

𝑓(𝑥) = sup
𝑦

𝑥𝑦 − 𝑓∗(𝑦).

Example 4.1. The next dual pairs will be used in several places.

• if 𝑓(𝑥) = |𝑥|𝑝
𝑝 (𝑝 > 1), then 𝑓∗(𝑦) = |𝑦|𝑞

𝑞 where 𝑞 = 𝑝/(𝑝 − 1).
• if 𝑓(𝑥) = |𝑥|, then 𝑓∗(𝑦) = 0 for 𝑦 ∈ [−1, 1] and ∞ for |𝑦| > 1.
• if 𝑓(𝑥) = exp(𝑥) then 𝑓∗(𝑦) = 𝑦 log 𝑦 − 𝑦 for 𝑦 > 0, 𝑓∗(𝑦) = ∞ for 𝑦 < 0

Proof. The fact that 𝑓∗ is ℝ ∪ {∞}-valued and convex is immediate.
To check lower semi-continuity, assume 𝑦𝑛 → 𝑦, with 𝑦𝑛 ∈ Dom(𝑓∗) and 𝑓∗(𝑦) >

lim inf𝑛 𝑓∗(𝑦𝑛).
Assume first that 𝑦 ∈ Dom(𝑓∗). Then for some sufficiently large 𝑚 and some 𝑥 ∈

Dom(𝑓)

𝑓∗(𝑦) ≥ 𝑥𝑦 − 𝑓(𝑥) − 1
𝑚

> lim inf
𝑛

𝑓∗(𝑦𝑛) ≥ lim inf
𝑛

𝑦𝑛𝑥 − 𝑓(𝑥) = 𝑦𝑥 − 𝑓(𝑥)

which is contradictory.
Assume now that 𝑦 ∉ Dom(𝑓∗) and lim inf𝑛 𝑓∗(𝑦𝑛) < ∞. Extract a subsequence

(𝑦𝑚𝑛
)𝑛 such that lim𝑛 𝑓∗(𝑦𝑚𝑛

) = lim inf𝑛 𝑓∗(𝑦𝑛). There exists 𝑥 ∈ Dom(𝑓) such that

𝑓∗(𝑦) > 𝑥𝑦 − 𝑓(𝑥) > lim inf
𝑛

𝑓∗(𝑦𝑛) = lim
𝑛

𝑓∗(𝑦𝑚𝑛
) ≥ lim

𝑛
𝑥𝑦𝑚𝑛

− 𝑓(𝑥) = 𝑥𝑦 − 𝑓(𝑥)

which is again contradictory.
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The fact that 𝑦 is a sub-gradient of 𝑓 at 𝑥 if 𝑓∗(𝑦) = 𝑥𝑦 − 𝑓(𝑥) is a rephrasing of the
definition of sub-gradients.

Note that if 𝑥 ∈ Dom(𝑓) and 𝑦 ∈ Dom(𝑓∗) then 𝑓(𝑥) + 𝑓∗(𝑦) ≥ 𝑥𝑦.
This observation entails that (𝑓∗)∗(𝑥) ≤ 𝑓(𝑥) for all𝑥 ∈ Dom(𝑓). If there existed some

𝑥 ∈ Dom(𝑓) with (𝑓∗)∗(𝑥) > 𝑥, there would exist some 𝑦 ∈ Dom(𝑓∗) with 𝑥𝑦 − 𝑓∗(𝑦) >
𝑓(𝑥) which is not possible.

In order to prove that that (𝑓∗)∗(𝑥) ≥ 𝑓(𝑥) for all 𝑥 ∈ Dom(𝑓), we rely on the
convexity, lower semi-continuity of 𝑓 and 𝑓∗ and the closure of Dom(𝑓). Under these
conditions, every point 𝑥 inDom(𝑓) has a sub-gradient 𝑦 and this entails 𝑓(𝑥) + 𝑓∗(𝑦) =
𝑥𝑦.

Exercise 4.3. Extend the notion of Fenchel-Legendre duality to lower-semi-
continuous convex functions over ℝ𝑘.

Exercise 4.4. Are all convex functions lower-semi-continuous? measurable?
Are all convex lower-semi-continuous functions measurable?

Remark 4.1. It is possible to define 𝑓∗ as 𝑓∗(𝑦) = sup
𝑥

𝑥𝑦 −𝑓(𝑥) even if 𝑓 is not convex and
lower semi-continuous. The function 𝑓∗ retains the convexity and lower semi-continuity
properties. But 𝑓 ≠ (𝑓∗)∗, we only get 𝑓 ≥ (𝑓∗)∗. Indeed (𝑓∗)∗ is the largest convex
minorant of 𝑓.

Theorem 4.3 (Jensen’s inequality). Let 𝑋 be a real-valued random variable and

𝑓 ∶ ℝ → ℝ be convex, lower-semi-continuous such that the closed set Dom(𝑓) ⊆
supp(ℒ(𝑋)) and 𝔼|𝑓(𝑋)| < ∞., then

𝑓(𝔼𝑋) ≤ 𝔼𝑓(𝑋) .

In view of the definition of convexity and of the fact that taking expectation extends
the idea of taking a convex combination, Jensen’s inequality is not a surprise.

Proof.

𝔼𝑓(𝑋) = 𝔼(𝑓∗)∗(𝑋)
= 𝔼[ sup

𝑦
(𝑦𝑋 − 𝑓∗(𝑦))]

≥ sup
𝑦

(𝑦𝔼𝑋 − 𝑓∗(𝑦))

= (𝑓∗)∗(𝔼𝑋)

= 𝑓(𝔼𝑋) .

Exercise 4.5. In the argument above, it is nota priori obvious that sup
𝑦

(𝑦𝑋−𝑓∗(𝑦))
is measurable, since the supremum is taken over a non-countable collection. Check
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that this is not an issue.

We will see many applications of Jensen’s inequality:

• comparison of sampling with replacement with sampling without replacement (com-
parison of binomial and hypergeometric tails)

• Cauchy-Schwarz and Hölder’s inequalities
• Derivation of maximal inequalities
• Non-negativity of relative entropy
• Derivation of Efron-Stein-Steele’s inequalities
• …

4.4 Variance

The variance (when it is defined) is an index of dispersion of the distribution of a random
variable.

Proposition 4.1 (Characterizations of variance). Let 𝑋 be a random variable over

some probability space. The variance of 𝑋 is finite iff 𝔼𝑋2 < ∞ and it may be

defined using the netx three equalities:

var(𝑋) = 𝔼 [(𝑋 − 𝔼𝑋)2]
= inf𝑎∈ℝ 𝔼 [(𝑋 − 𝑎)2]
= 𝔼𝑋2 − (𝔼𝑋)2 .

We need to check that three right-hand-side are finite if one of them is, and that when
they are finite, they are all equal.

Proof. Assume 𝔼𝑋2 < ∞, as |𝑋| ≤ 𝑋2

2 + 1
2 , this entails 𝔼|𝑋| < ∞. If 𝔼𝑋2 < ∞ then so is

𝔼|𝑋|. The right-hand-side on the third line is finite if 𝔼𝑋2 < ∞. As (𝑥 − 𝑏)2 ≤ 2𝑥2 + 2𝑏2

for all 𝑥, 𝑏, The right-hand-side on the first line, the infimum on the second line are finite
when 𝔼𝑋2 < ∞.

As 𝑋2 ≤ 2(𝑋 − 𝔼𝑋)2 + 2(𝔼𝑋)2, 𝔼𝑋2 < ∞ if 𝔼 [(𝑋 − 𝔼𝑋)2] < ∞.
Assume now that 𝔼𝑋2 < ∞.

𝔼 [(𝑋 − 𝑎)2] = 𝔼 [(𝑋 − 𝔼𝑋 − (𝑎 − 𝔼𝑋))2]
= 𝔼 [(𝑋 − 𝔼𝑋)2 − 2𝔼[(𝑋 − 𝔼𝑋)](𝑎 − 𝔼𝑋) + (𝑎 − 𝔼𝑋)2]
= 𝔼 [(𝑋 − 𝔼𝑋)2] + (𝑎 − 𝔼𝑋)2 .

As (𝑎 − 𝔼𝑋)2 ≥ 0, we have established that 𝔼 [(𝑋 − 𝔼𝑋)2] = inf𝑎∈ℝ 𝔼 [(𝑋 − 𝑎)2].
Moreover, the infimum is a minimum, it is achieved at a single point 𝔼𝑋.

Remark 4.2. The first and second characterizations of variance assert that the expectation
minimizes the average quadratic error. A fact of great importance in Statistics.
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Exercise 4.6. Check that if 𝑃 {𝑋 ∈ [𝑎, 𝑏]} = 1, then var(𝑋) ≤ (𝑏−𝑎)2

4 , .

4.5 Higher moments

In this Section we relate 𝔼|𝑋|𝑝 with 𝔼|𝑋|𝑞 for different values of 𝑝, 𝑞 ∈ ℝ+. Our starting
point is small technical result in real analysis.

Proposition 4.2 (Young’s inequality). Let 𝑝, 𝑞 > 1 be conjugate (1/𝑝 + 1/𝑞 = 1),
and 𝑥, 𝑦 > 0, then

𝑥𝑦 ≤ 𝑥𝑝

𝑝
+ 𝑦𝑞

𝑞
.

Proof. Note that if 𝑝 and 𝑞 are conjugate, then 𝑞 = 𝑝/(𝑝 − 1) and (𝑝 − 1)(𝑞 − 1) = 1.
It suffices to check that for all 𝑥, 𝑦 > 0,

𝑥𝑝

𝑝
≥ 𝑥𝑦 − 𝑦𝑞

𝑞
.

Fix 𝑥 > 0, consider the function over [0, ∞) defined by

𝑧 ↦ 𝑥𝑧 − 𝑧𝑞

𝑞
.

This function is differentiable with derivative 𝑥 − 𝑧𝑞−1 = 𝑥 − 𝑧1/(𝑝−1). It achieves its
maximum at 𝑧 = 𝑥𝑝−1 and the maximum is equal to

𝑥𝑥𝑝−1 − 𝑥𝑞(𝑝−1)

𝑞
= 𝑥𝑝 − 𝑥𝑝

𝑞
= 𝑥𝑝

𝑝
.

Figure 4.2 displays a graphic proof of Young’s inequality.

Remark 4.3. A special case of Young inequality is obtained by taking 𝑝 = 𝑞 = 2.

We are now in a position to prove three fundamental inequalities: Cauchy-Schwarz,
Hölder and Minkowski.

Theorem 4.4 (Cauchy-Schwarz). Let 𝑋 and 𝑌 be two random variables on the same

probability space. Assume both 𝔼𝑋2 and 𝔼𝑌 2 are finite. Then

𝔼[𝑋𝑌 ] ≤
√

𝔼𝑋2 ×
√

𝔼𝑌 2 .

Proof. If either
√

𝔼𝑋2 = 0 or
√

𝔼𝑌 2 = 0, the inequality is trivially satisfied.
So, without loss of generality, assume

√
𝔼𝑋2 > 0 and

√
𝔼𝑌 2 > 0. Then, because

𝑎𝑏 ≤ 𝑎2/2 + 𝑏2/2, for all real 𝑎, 𝑏, everywhere,
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Figure 4.2: Graphical illlustration of Young’s inequality. We choose 𝑝 =‵ 𝑟𝑝‵ and 𝑞 =‵ 𝑟𝑞‵,
𝑥 =‵ 𝑟𝑥‵ and 𝑦 =‵ 𝑟𝑦‵. The black point is located at (𝑥, 𝑦)𝑇. The product 𝑥𝑦 equals
the area of the rectangle located between the origin and (𝑥, 𝑦)𝑇 (delimited by the dashed
segments). The dotted line represents function 𝑠 ↦ 𝑠𝑝−1, and interchanging the axes, the
function 𝑡 ↦ 𝑡𝑞−1 = 𝑡1/(𝑝−1). The area of the light grey surface under the dotted line
equals 𝑥𝑝

𝑝 = ∫𝑥
0

𝑠𝑝−1d𝑠, while the area of the darker grey surface below line 𝑦 = 1 and
above the dotted line, equals 𝑦𝑞

𝑞 = ∫𝑦
0

𝑡𝑞−1d𝑡. The union of the two disjoint surfaces covers
the rectangle located between the origin and (𝑥, 𝑦)⊤. Equality occurs when the dotted line
passes though (𝑥, 𝑦)⊤, that is when 𝑦 = 𝑥𝑝−1.

|𝑋𝑌 |√
𝔼𝑋2

√
𝔼𝑌 2

≤ |𝑋|2

2𝔼𝑋2 + |𝑌 |2

2𝔼𝑌 2 .

Taking expectation on both sides leads to the desired result.

Exercise 4.7. Why is the inequality trivially satisfied if
√

𝔼𝑋2 = 0?

Theorem 4.4 tells us that if 𝑋 and 𝑌 are square-integrable, then 𝑋𝑌 is integrable.
Hölder’s inequality generalizes Cauchy-Schwarz inequality. Indeed, Cauchy-Schwarz

inequality is just Hölder’s inequality for 𝑝 = 𝑞 = 2 (2 is its own conjugate).

Theorem 4.5 (Hölder’s inequality). Let 𝑋 and 𝑌 be two random variables on the

same probability space. Let 𝑝, 𝑞 > 1 be conjugate (1/𝑝 + 1/𝑞 = 1), assume both

𝔼|𝑋|𝑝 and 𝔼|𝑌 |𝑞 are finite. Then we have
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𝔼[𝑋𝑌 ] ≤ (𝔼|𝑋|𝑝)1/𝑝 × (𝔼|𝑌 |𝑞)1/𝑞 .

Proof. If either 𝔼|𝑋|𝑝 = 0 or 𝔼|𝑌 |𝑞 = 0, the inequality is trivially satisfied.
Assume that 𝔼|𝑋|𝑝 > 0 and 𝔼|𝑌 |𝑞 > 0.
Follow the proof of Cauchy-Schwarz inequality, but replace 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 by Young’s

inequality:

𝑎𝑏 ≤ |𝑎|𝑝

𝑝
+ |𝑏|𝑞

𝑞
∀𝑎, 𝑏 ∈ ℝ

if 1/𝑝 + 1/𝑞 = 1.
The inequality below is a consequence of Young’s inequality and of the monotonicity

of expectation:

𝔼|𝑋𝑌 |
𝔼[|𝑋|𝑝]1/𝑝𝔼[|𝑌 |𝑞]1/𝑞 = 𝔼[ |𝑋|

𝔼[|𝑋|𝑝]1/𝑝
|𝑌 |

𝔼[|𝑌 |𝑞]1/𝑞 ]

≤ 𝔼[ |𝑋|𝑝
𝑝𝔼[|𝑋|𝑝] + |𝑌 |𝑞

𝑞𝔼[|𝑌 |𝑞]

= 1
𝑝 + 1

𝑞
= 1 .

Corollary 4.1. For 1 ≤ 𝑝 < 𝑞,

𝔼[|𝑋|𝑝]
1/𝑝

≤ 𝔼[|𝑋|𝑞]
1/𝑞

.

For 𝑝 ∈ [0, ∞) 𝑋 ↦ (𝔼|𝑋|𝑝)1/𝑝 defines a semi-norm on the set of random variables
for which (𝔼|𝑋|𝑝)1/𝑝 is finite. Minkowski’s inequality asserts that 𝑋 ↦ (𝔼|𝑋|𝑝)1/𝑝 satisfies
the triangle inequality.

Theorem 4.6 (Minkowski’s inequality). Let 𝑋, 𝑌 be two real-valued random vari-

ables defined on the same probability space. Let 𝑝 ∈ [1, ∞). Assume that 𝔼|𝑋|𝑝 < ∞
and 𝔼|𝑌 |𝑝 < ∞. Then we have:

(𝔼[|𝑋 + 𝑌 |𝑝])1/𝑝 ≤ (𝔼[|𝑋|𝑝])1/𝑝 + (𝔼[|𝑌 |𝑝])1/𝑝

which entails 𝔼|𝑋 + 𝑌 |𝑝 < ∞.

The proof of Theorem 4.6 follows from Hölder’s inequality (Theorem 4.5).

Proof. The inequality below also follows from triangle inequality on ℝ, monotonicity. The
last equality follows from linearity of expectation:

𝔼[|𝑋 + 𝑌 |𝑝] ≤ 𝔼[(|𝑋| + |𝑌 |) × |𝑋 + 𝑌 |𝑝−1]

= 𝔼[|𝑋| × |𝑋 + 𝑌 |𝑝−1] + 𝔼[|𝑌 | × |𝑋 + 𝑌 |𝑝−1] .
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This is enough to handle the case 𝑝 = 1.
From now on, assume 𝑝 > 1. Hölder’s inequality entails the next inequality and a

similar upper bound for 𝔼[|𝑌 | × |𝑋 + 𝑌 |𝑝−1].

𝔼[|𝑋| × |𝑋 + 𝑌 |𝑝−1] ≤ 𝔼[|𝑋|𝑝]
1/𝑝

× 𝔼[|𝑋 + 𝑌 |𝑝]
(𝑝−1)/𝑝

Summing the two upper bounds, we obtain

𝔼[|𝑋 + 𝑌 |𝑝] ≤ (𝔼[|𝑋|𝑝]
1/𝑝

+ 𝔼[|𝑌 |𝑝]
1/𝑝

) × 𝔼[|𝑋 + 𝑌 |𝑝]
(𝑝−1)/𝑝

.

This prove’s Minkowski’s inequality for 𝑝 > 1.
𝑠𝑞𝑢𝑎𝑟𝑒

4.6 Median and interquartile range

Robust and non-robust indices of location.

Definition 4.5. Let 𝑋 be a real random variable over some probability space. Let 𝐹
be the cumulative distribution function of 𝑋. The median of the distribution of 𝑋
is 𝐹 ←(1/2).

The median minimizes the mean absolute deviation.

Proposition 4.3. If 𝑚 is such that 𝑃{𝑋 > 𝑚} = 𝑃{𝑋 < 𝑚} then 𝑚 is median of

the distribution of 𝑋, and if 𝑋 is integrable:

𝔼∣𝑋 − 𝑚∣ = min
𝑎∈ℝ

𝔼∣𝑋 − 𝑎∣

Proof. Assume 𝑎 < 𝑚,

𝔼 [∣𝑋 − 𝑎∣ − ∣𝑋 − 𝑚∣] = −(𝑚 − 𝑎)𝑃(−∞, 𝑎] + ∫
(𝑎,𝑚]

(2𝑋 − (𝑎 + 𝑚))d𝑃(𝑥) + (𝑚 − 𝑎)𝑃(𝑚, ∞)
≥ −(𝑚 − 𝑎)𝑃(−∞, 𝑎] − (𝑚 − 𝑎)𝑃(𝑎, 𝑚] + (𝑚 − 𝑎)𝑃(𝑚, ∞)
= (𝑚 − 𝑎)(𝑃(𝑚, ∞) − 𝑃(−∞, 𝑚])
= 0 .

The same line of reasoning allows to handle the case 𝑎 > 𝑚 and to conclude.

Combining three of the inequalities we have just proved, allows us to establish an
interesting connection between expectation, median and standard deviation.
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Theorem 4.7 (Lévy’s inequality). Let 𝑚 be the median of the distribution of 𝑋, a

square-integrable random variable over some probability space. Then

∣𝑚 − 𝔼𝑋∣ ≤ √var(𝑋) .

The robust and non-robust indices of location differ by at most the standard deviation,
which may be infinite.

Proof. By convexity of 𝑥 ↦ |𝑥|, we have

∣𝑚 − 𝔼𝑋∣ ≤ 𝔼∣𝑚 − 𝑋∣
by Jensen’s inequality
≤ 𝔼∣𝔼𝑋 − 𝑋∣
the median minimizes the mean absolute error

≤ (𝔼∣𝔼𝑋 − 𝑋∣
2
)

1/2

by Cauchy-Schwarz inequality.

Remark 4.4. The mean and the median may differ. First the median is always defined,
while the mean may not. Think for example of the standard Cauchy distribution which
has density 1

𝜋
1

1+𝑥2 over ℝ. If 𝑋 is Cauchy distributed, then 𝔼|𝑋| = ∞. The mean is not
defined. But as the density is a pair function, 𝑋 is symmetric (𝑋 and −𝑋 are distributed
the same way), and this implies that the median of (the distribution) of 𝑋 is 0.

Consider the exponential distribution with density exp(−𝑥) over [0, ∞), it has mean
1, median log(2), and variance 1. If we turn to exponential distribution with density
𝜆 exp(−𝜆𝑥), it has mean 1/𝜆, median log(2)/𝜆, and variance 1/𝜆2. Lévy’s inequality does
not tell more that what we can compute with bare hands.

Finally consider Gamma distributions with shape parameter 𝑝 and intensity parameter
𝜆. It has mean 𝑝/𝜆, variance 𝑝/𝜆2. The median is not easily computed though we can easily
check that it is equal to 𝑔(𝑝)/𝜆 where 𝑔(𝑝) is the median of the Gamma distribution with
parameters 𝑝 and 1. Lévy’s inequality tells us that |𝑔(𝑝) − 𝑝| ≤ √𝑝.

4.7 ℒ𝑝 and 𝐿𝑝 spaces

Let 𝑝 ∈ [1, ∞). Let (Ω, ℱ, 𝑃) be a probability space. Define ℒ𝑝(Ω, ℱ, 𝑃) (often abbrevi-
ated to ℒ𝑝(𝑃 ) or even ℒ𝑝 when there is no ambiguity) as

ℒ𝑝(Ω, ℱ, 𝑃) = {𝑋 ∶ 𝑋 is a real random variable over (Ω, ℱ, 𝑃), 𝔼|𝑋|𝑝 < ∞} .

Let ‖𝑋‖𝑝 be defined by ‖𝑋‖𝑝 = (𝔼|𝑋|𝑝)
1/𝑝

.
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Let ℒ0(Ω, ℱ, 𝑃) denote the vector space of random variables over (Ω, ℱ, 𝑃).
We first notice that sets ℒ𝑝(Ω, ℱ, 𝑃) form a nested sequence.

Proposition 4.4. Let (Ω, ℱ, 𝑃) be a probability space, then for 1 ≤ 𝑝 ≤ 𝑞 < ∞:

1. ‖𝑋‖𝑝 < ‖𝑋‖𝑞.

2. ℒ𝑞(Ω, ℱ, 𝑃) ⊂ ℒ𝑝(Ω, ℱ, 𝑃).

Proof. Assume 1 ≤ 𝑝 ≤ 𝑞 < ∞, as 𝑥 ↦ 𝑥𝑞/𝑝 is convex on [0, ∞) by Jensen’s inequality
(Theorem 4.3), we have

𝔼[|𝑋|𝑝]𝑞/𝑝 ≤ 𝔼[|𝑋|𝑞] .

This establishes 1.) And 2.) is an immediate consequence of 1.

Proposition 4.4 is a about inclusion of sets. The next theorem summarizes several
points: that sets ℒ𝑝 are linear subspaces of ℒ0, and that they are complete as pseudo-metric
(pseudo-normed) spaces.

Theorem 4.8. For 𝑝 ∈ [1, ∞), let ℒ𝑝(Ω, ℱ, 𝑃) and ‖ ⋅ ‖𝑝 be defined as above. Then,

1. ℒ𝑝(Ω, ℱ, 𝑃) is a linear subspace of the space of real random variables.

2. ‖ ⋅ ‖𝑝 is a pseudo-norm on ℒ𝑝(Ω, ℱ, 𝑃).
3. If (𝑋𝑛)𝑛 is a sequence in ℒ𝑝(Ω, ℱ, 𝑃) that satisfies

lim
𝑛

sup
𝑚≥𝑛

∣𝑋𝑛 − 𝑋𝑚∣
𝑝

= 0

then there exists 𝑋 ∈ ℒ𝑝(Ω, ℱ, 𝑃) such that lim𝑛 ‖𝑋𝑛 − 𝑋‖𝑝 = 0.
4. There exists a subsequence (𝑋𝑚𝑛

)𝑛 such that 𝑋𝑚𝑛
→ 𝑋 𝑃-almost surely.

Remark 4.5. In a pseudo-metric space, to prove that a Cauchy sequence converges, it is
enough to check convergence of a subsequence.

Picking a convenient subsequence, and possibly relabeling elements, we may assume
∥𝑋𝑛 − 𝑋𝑚∥

𝑝
≤ 2−𝑛∧𝑚 for all 𝑛, 𝑚.

Lemma 4.1 (First Borell-Cantelli Lemma). Let (𝐴𝑛)𝑛 be a sequence of events from

some probability space (Ω, ℱ, 𝑃). Assume ∑𝑛 𝑃(𝐴𝑛) < ∞ then, with probability

1, only finetely many events 𝐴𝑛 are realized:

𝑃 {𝜔 ∶ ∑
𝑛

𝕀𝐴𝑛
(𝜔) < ∞} = 1 .

Proof. The event {𝜔 ∶ ∑𝑛 𝕀𝐴𝑛
(𝜔) = ∞} coincides with ∩𝑛 ∪𝑚≥𝑛 𝐴𝑛:
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𝑃 {∑
𝑛

𝕀𝐴𝑛
(𝜔) = ∞} = 𝑃(∩𝑛 ∪𝑚≥𝑛 𝐴𝑛) .

Now, the sequence (∪𝑚≥𝑛𝐴𝑛)𝑛 is monotone decreasing: lim𝑛 ↓ ∪𝑚≥𝑛𝐴𝑛 = ∩𝑛 ∪𝑚≥𝑛
𝐴𝑛 .

By Fatou’s Lemma,

𝔼 lim𝑚 𝕀∪𝑚≥𝑛𝐴𝑚
= 𝔼 lim inf𝑛 𝕀∪𝑚≥𝑛𝐴𝑚

≤ lim inf𝑛 𝔼𝕀∪𝑚≥𝑛𝐴𝑚

≤ lim inf𝑛 ∑𝑚≥𝑛 𝑃(𝐴𝑚)
= 0 .

The last equation comes from the fact that the remainders of a convergent series are
vanishing.

Proof. Points 1) and 2) follow from Minkowski’s inequality. This entails that ‖ ⋅ ‖𝑝 defines a
pseudo-norm on ℒ𝑝. If two random variables 𝑋, 𝑌 from ℒ𝑝 satisfy ‖𝑋 − 𝑌 ‖𝑝 = 0, then
𝑋 = 𝑌 𝑃-a.s.

To establish 3), we need to check that the sequence converges almost surely, and that an
almost sure limit belongs to ℒ𝑝.

Define event 𝐴𝑛 by

𝐴𝑛 = {𝜔 ∶ ∣𝑋𝑛(𝜔) − 𝑋𝑛+1(𝜔)∣ > 1
𝑛2 } .

By Markov inequality,

𝑃(𝐴𝑛) ≤ 𝔼[𝑛2𝑝∣𝑋𝑛 − 𝑋𝑚∣
𝑝
] ≤ 𝑛2𝑝2−𝑛𝑝 .

Hence, ∑𝑛≥1 𝑃(𝐴𝑛) < ∞. By the first Borel-Cantelli Lemma, on some event 𝐸 with
probability 1, only finitely many 𝐴𝑛 are realized.

If 𝜔 ∈ 𝐸, the condition ∣𝑋𝑛(𝜔) − 𝑋𝑛+1(𝜔)∣ > 1
𝑛2 is realized for only finitely many

indices 𝑛. Thus the real-valued sequence (𝑋𝑛(𝜔))𝑛 is a Cauchy sequence. It has a limit we
denote 𝑋(𝜔). If 𝜔 ∉ 𝐸, we agree on 𝑋(𝜔) = 0. On Ω, we have

𝑋(𝜔) = lim
𝑛

𝕀𝐸(𝜔)𝑋(𝜔) .

A limit of random variables is a random variable. Hence 𝑋 is a random variable.
It remains to check that 𝑋 ∈ ℒ𝑝. Note first that

∣∥𝑋𝑚∥
𝑝

− ∥𝑋𝑛∥
𝑝
∣ ≤ ∥𝑋𝑚 − 𝑋𝑛∥

𝑝
.

Hence (∥𝑋𝑛∥
𝑝
)

𝑛
is a Cauchy sequence and converges to some finite limit. As

|𝑋(𝜔)| ≤ lim inf |𝑋𝑛(𝜔)|
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by Fatou’s Lemma
𝔼|𝑋|𝑝 ≤ lim inf𝔼|𝑋𝑛|𝑝 < ∞ .

Hence 𝑋 ∈ ℒ𝑝.
Finally we check that lim𝑚 ‖𝑋𝑛 − 𝑋‖𝑝 = 0. By Fatou’s lemma again,

𝔼∣𝑋 − 𝑋𝑚∣
𝑝

≤ lim inf
𝑛

𝔼∣𝑋𝑛 − 𝑋𝑚∣
𝑝

Hence

lim
𝑚

𝔼∣𝑋 − 𝑋𝑚∣
𝑝

≤ lim
𝑚

lim inf
𝑛

𝔼∣𝑋𝑛 − 𝑋𝑚∣
𝑝

= 0 .

Remark 4.6. Can we extend the almost sure convergence to the whole sequence? This
is not the case. Consider ([0, 1], ℬ([0, 1]), 𝑃 ) where 𝑃 is the uniform distribution. For
𝑘 = 𝑗 + 𝑛(𝑛 − 1)/2, 1 ≤ 𝑗 ≤ 𝑛, let 𝑋𝑛 = 𝕀[(𝑗−1)/𝑛,𝑗/𝑛]. The sequence 𝑋𝑛 converges to 0
in ℒ𝑝 for all 𝑝 ∈ [1, ∞). Indeed ‖𝑋𝑘‖𝑝 = 𝑛−𝑝 for 𝑘 = 𝑗 + 𝑛(𝑛 − 1)/2, 1 ≤ 𝑗 ≤ 𝑛. For any
𝜔 ∈ [0, 1], the sequence 𝑋𝑛(𝜔) oscillates between 0 and 1 infinitely many times.

ℒ𝑝 provide us with a bridge between probability and analysis. In analysis, the fact
that ‖ ⋅ ‖𝑝 is just a pseudo-norm leads to consider 𝐿𝑝 spaces. 𝐿𝑝 spaces are defined from
ℒ𝑝 spaces by taking equivalence classes of random variables. Indeed, define relation ≡
over ℒ𝑝(Ω, ℱ, 𝑃) by 𝑋 ≡ 𝑋′ iff 𝑃{𝑋 = 𝑋′} = 1. This relation is an equivalence
relation (reflexive, symmetric and transitive). If 𝑋 ≡ 𝑋′ and 𝑌 ≡ 𝑌 ′, then ‖𝑋 − 𝑌 ‖𝑝 =
‖𝑋′ − 𝑌 ‖𝑝 = ‖𝑋′ − 𝑌 ′‖𝑝. 𝐿𝑝(Ω, ℱ, 𝑃) is the quotient space of ℒ𝑝 by relation ≡. We have
the fundamental result.

Theorem 4.9. For 𝑝 ∈ [1, ∞), 𝐿𝑝(Ω, ℱ, 𝑃) equiped with ‖ ⋅ ‖𝑝 is a complete normed

space (Banach space).

This eventually allows us to invoke theorems from functional analysis.

4.8 Bibliographical remarks
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Chapter 5

Families of discrete distributions

The goal of this lesson is getting acquaintedwith important families of discrete distributions
and to get familiar with distributional calculus. Discretet probability distributions will be
presented through distribution functions and mostly probability mass functions.

In this lesson, universe Ω$ is a subset of ℕ𝑑, it is finite or countable, the straightforward
𝜎-algebra to work with is the powerset 2Ω.

5.1 Bernoulli and Binomial

Definition 5.1. ABernoulli distribution is a probability distribution𝑃 onΩ = {0, 1}.
The parameter of 𝑃 is 𝑃{1} ∈ [0, 1].

A Bernoulli distribution is completely defined by its parameter.
The expectation of a Bernoulli distribution with parameter 𝑝 equals 𝑝.

Definition 5.2 (Binomial distribution). A binomial distribution with parameters
𝑛 ∈ ℕ, 𝑝 ∈ [0, 1] (𝑛 is size and 𝑝 is success) is a probability distribution 𝑃 on Ω =
{0, 1, 2, … , 𝑛}, defined by

𝑃{𝑘} = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑘

The connexion between Bernoulli and Binomial distributions is obvious: a Bernoulli
distribution is a Binomial distribution with size parameter equal to 1. This connexion goes
further: the sum of independent Bernoulli random variables with same success parameter is
Binomial distributed.

Assume now Ω′ = {0, 1}𝑛.
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Proposition 5.1. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent, identically distributed Bernoulli

random variables with success parameter 𝑝 ∈ [0, 1], then 𝑌 = ∑𝑛
𝑖=1 𝑋𝑖 is distributed

according to a Binomial disctribution with size parameter 𝑛 and success probability

𝑝.

Proof. It is enough to check that the probability mass functions coincide.
For 𝑘 ∈ 0, … , 𝑛

𝑃{
𝑛

∑
𝑖=1

𝑋𝑖 = 𝑘} = ∑
𝑥1,…,𝑥𝑛∈{0,1}𝑝

𝕀∑𝑛
𝑖=1 𝑥𝑖=𝑘𝑃{ ∧𝑛

𝑖=1 𝑋𝑖 = 𝑥𝑖}

= ∑
𝑥1,…,𝑥𝑛∈{0,1}𝑝

𝕀∑𝑛
𝑖=1 𝑥𝑖=𝑘

𝑛
∏
𝑖=1

𝑃{𝑋𝑖 = 𝑥𝑖}

= ∑
𝑥1,…,𝑥𝑛∈{0,1}𝑝

𝕀∑𝑛
𝑖=1 𝑥𝑖=𝑘

𝑛
∏
𝑖=1

𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖

= ∑
𝑥1,…,𝑥𝑛∈{0,1}𝑝

𝕀∑𝑛
𝑖=1 𝑥𝑖=𝑘 𝑝𝑘(1 − 𝑝)𝑛−𝑘

= (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘 .

This observation facilitates the computation ofmoments of Binomial distribution.
The expected value of a Bernoulli distribution with parameter 𝑝 is 𝑝! Its variance is

𝑝(1 − 𝑝).
By linearity of expectation, the expected value of the binomial distribution with param-

eters 𝑛 and 𝑝 is 𝑛𝑝.
The variance of a sum of independent random variables is the sum of the variances,

hence the variance of he binomial distribution with parameters 𝑛 and 𝑝 is 𝑛𝑝(1 − 𝑝).
More on wikipedia.
Binomial distributions with the same success parameter

Proposition 5.2. Let 𝑋, 𝑌 be independent over probability space (Ω, ℱ, 𝑃) and

distributed according to Bin(𝑛1, 𝑝) and Bin(𝑛2, 𝑝).
Then 𝑋 + 𝑌 is distributed according to Bin(𝑛1 + 𝑛2, 𝑝).

Exercise 5.1. Check the preceding proposition.

5.2 Poisson

The Poisson distribution appears as a limit of Binomial distributions in a variety of circum-
stances connected to rare events phenomena.

ma1ay010 52 m1 isifar

https://en.wikipedia.org/wiki/Binomial_distribution
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Figure 5.1: Binomial probability mass functions with 𝑛 = 20 and different values of 𝑝 :
.5, .7, .2.

Definition 5.3. A Poisson distribution with parameter 𝜆 > 0 is a probability distri-
bution 𝑃 on Ω = ℕ with

𝑃{𝑘} = e−𝜆 𝜆𝑘

𝑘!

The expected value of the Poisson distribution with paramenter 𝜆 is 𝜆. The variance of
a Poisson distribution is equal to its expected value.

𝔼𝑋 =
∞

∑
𝑛=0

e−𝜆 𝜆𝑛

𝑛!
× 𝑛

= 𝜆 ×
∞

∑
𝑛=1

e−𝜆 𝜆𝑛−1

(𝑛 − 1)!

= 𝜆 .

Proposition 5.3. Let 𝑋, 𝑌 be independent and Poisson distributed over probability

space (Ω, ℱ, 𝑃), then 𝑋 + 𝑌 is Poisson distributed.

Proof. We check the proposition in the simplest and most tedious way. We compute the
probability mass function of the distribution of 𝑋 + 𝑌. Assume 𝑋 ∼ Po(𝜆), 𝑌 ∼ Po(𝜇).
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Figure 5.2: Poisson probability mass functions with different values of parameter: 1, 5, 10.
Recall that the parameter of a Poisson distribution equals its expectation and its variance.
The probability mass function of a Poisson distribution achieves its maximum (called the
mode) close to its expectation.

For each 𝑘 ∈ ℕ:

Pr{𝑋 + 𝑌 = 𝑘} = Pr{
𝑘

⋁
𝑚=0

(𝑋 = 𝑚 ∧ 𝑌 = 𝑘 − 𝑚)}

=
𝑘

∑
𝑚=0

Pr{𝑋 = 𝑚 ∧ 𝑌 = 𝑘 − 𝑚}

=
𝑘

∑
𝑚=0

Pr{𝑋 = 𝑚} × Pr{𝑌 = 𝑘 − 𝑚}

=
𝑘

∑
𝑚=0

e−𝜆 𝜆𝑚

𝑚!
e−𝜇 𝜇𝑘−𝑚

(𝑘 − 𝑚)!

= e−𝜆−𝜇 (𝜆 + 𝜇)𝑘

𝑘!

𝑘
∑
𝑚=0

𝑘!
𝑚!(𝑘 − 𝑚)!

( 𝜆
𝜆 + 𝜇

)
𝑚

( 𝜇
𝜆 + 𝜇

)
𝑘−𝑚

= e−𝜆−𝜇 (𝜆 + 𝜇)𝑘

𝑘!

𝑘
∑
𝑚=0

( 𝑘
𝑚

) ( 𝜆
𝜆 + 𝜇

)
𝑚

( 𝜇
𝜆 + 𝜇

)
𝑘−𝑚

= e−𝜆−𝜇 (𝜆 + 𝜇)𝑘

𝑘!
( 𝜆

𝜆 + 𝜇
+ 𝜇

𝜆 + 𝜇
)

𝑘

= e−(𝜆+𝜇) (𝜆 + 𝜇)𝑘

𝑘!
The last expression if the pmf of Po(𝜆 + 𝜇) at 𝑘.
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Exercise 5.2. Check that themode (maximum) of a Poisson probabilitymass function
with parameter 𝜆 is achieved at 𝑘 = ⌊𝜆⌋. It is always unique?

Exercise 5.3. Check that the median of a Poisson distribution with integer parameter
𝜆 is not smaller than 𝜆.

5.3 Geometric

A geometric distribution is a probability distribution over ℕ ⊂ {0, 1}. It depends on a
parameter 𝑝 > 0.

Assume we are allowed to toss a biased coin infinitely many times. The number of
times we have to toss the coin until we get a head is geometrically distributed.

Let 𝑋 be distributed according to a geometric distribution with parameter 𝑝. The
geometric probability distribution is easily defined by its tail function. In the event 𝑋 > 𝑘,
the first 𝑘 outcomes have to be tail.

𝑃{𝑋 > 𝑘} = (1 − 𝑝)𝑘

The probability mass function of the geometric distribution follows:

𝑃{𝑋 = 𝑘} = (1 − 𝑝)𝑘−1 − (1 − 𝑝)𝑘 = 𝑝 × (1 − 𝑝)𝑘−1 for 𝑘 = 1, 2, …

On average, we have to toss the coin 𝑝 times until we get a head:

𝔼𝑋 =
∞

∑
𝑘=0

𝑃{𝑋 > 𝑘} = 1
𝑝

It is also possible to define geometric random variables as the number of times we have
to toss the coin beforewe get a head. This requiresmodifying quantile function, probability
mass function, expectation, and so on. This is the convention R uses.
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Figure 5.3: Geometric probability mass functions with different values of parameter 𝑝:
1/2, 1/3, 1/5. The probability mass function equals 𝑝 × (1 − 𝑝)𝑘−1 at 𝑘 ≥ 1. The mode is
achieved at 𝑘 = 1 whatever the value of 𝑝. The expectation equals 1/𝑝

Sums of independent geometric random variables are not distributed according to a
geometric distribution.
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Chapter 6

Characterizations of discrete
probability distributions

6.1 Motivation

In full generality, a probability distribution is a complex object. It is a [0, 1]-valued function
defined over a 𝜎-algebra of subsets. A concrete 𝜎-algebra, let alone the abstract notion of
𝜎-algebra, is not easily grasped. Looking for simpler characterizations of probability distri-
butions is a sensible goal. When facing questions like: “are two probability distributions
equal¿‘, we know it suffices to check that the two distributions coincide on generating fami-
lies of events. This makes cumulative distribution functions precious tools. Cumulative
distribution functions and their generalized inverse functions (quantile functions) are very
convenient when handlingmaxima, minima, or more generally order statistics of collections
of independent random variables, but when it comes to handling sums of independent
random variables or branching processes, cumulative distribution functions are ofmoderate
help.

In this lesson, we review a way of characterizing probability distributions over (ℕ, ℱ =
2ℕ) through functions defined on the real line: probability generating functions (Sec-
tion 6.2)). Later (Chapter Chapter 12), wewill surveymore general tools: Laplace transforms
(Section 12.2)) and characteristic functions which extend Fourier transforms to probability
distributions (Section 12.3)).

All threemethods are distinct in scope but they rely on the same idea and share common
features. Indeed, probability generating functions can be seen as special case of Laplace
transforms. The latter can be seen as special cases of Fourier transforms.

All three methods do characterize probability distributions. They are equipped with
inversion formulae. The three methods provide us with a seamless treatment of sums of
independent random variables.

All three methods relate the integrability of probability distributions and the smooth-
ness of transforms.

Probability generating functions, Laplace transforms and characteristic functions de-
liver an important analytical machinery to Probability Theory. From Analysis, we get
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CHAPTER 6. CHARACTERIZATIONS OF DISCRETE PROBABILITY DISTRIBUTIONS

off-the-shelf arguments to establish smoothness properties of transforms, and with little
more work, we can construct the inversion formulae.

6.2 Probability generating function

In this section, 𝑋 is an integer-valued random variable, with distribution 𝑃, cumulative
distribution function 𝐹 and probability mass function 𝑝. Recall that 𝑃 is completely
characterized by the much simpler objects 𝐹 and 𝑝. Now, let 𝑌 be another integer-valued
random variable living on the same probability space as 𝑋, independent from 𝑋, with
distribution 𝑄, distribution function 𝐺 and probability mass function 𝑞. What can we
tell about the distribution of 𝑋 + 𝑌? Is it easy to figure out its cumulative distribution
function, its probability mass function?

The probability mass function of (the distribution of) 𝑋 + 𝑌 is the convolution of 𝑝
and 𝑞

ℙ{𝑋 + 𝑌 = 𝑛} =
𝑛

∑
𝑘=0

ℙ{𝑋 + 𝑌 = 𝑛 ∧ 𝑋 = 𝑘}

=
𝑛

∑
𝑘=0

ℙ{𝑌 = 𝑛 − 𝑘 ∧ 𝑋 = 𝑘}

=
𝑛

∑
𝑘=0

𝑝(𝑘)𝑞(𝑛 − 𝑘)

= 𝑝 ⋆ 𝑞(𝑛) .

Another function characterizes probability distributions and delivers instantaneous
information about the distribution of sums of independent integer-valued randomvariables
and many other things.

Definition 6.1 (Probability Generating Function). The probability generating func-
tion (PGF) of a probability distribution over ℕ, defined by its probability mass
function (PMF) 𝑓 is the function 𝐺 ∶ [0, 1] → ℝ defined by:

𝐺(𝑠) =
∞

∑
𝑛=0

𝑓(𝑛)𝑠𝑛 .

Example 6.1. The probability generating function of basic discrete distributions is easily
computed. The results are useful and suggestive.

• Bernoulli distribution with parameter 𝑝:

𝐺(𝑠) = (1 − 𝑝)𝑠0 + 𝑝𝑠1 = 1 + 𝑝(𝑠 − 1)

• Binomial distribution with parameters 𝑛 and 𝑝:

𝐺(𝑠) =
𝑛

∑
𝑘=0

(𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑠𝑘 = (𝑝𝑠 + 1 − 𝑝)𝑛 = (1 + 𝑝(𝑠 − 1))𝑛

ma1ay010 58 m1 isifar



6.3. INVERSION FORMULA

• Poisson distribution with parameter 𝜇:

𝐺(𝑠) =
∞

∑
𝑛=0

e−𝜇 𝜇𝑛

𝑛!
𝑠𝑛 = e𝜇(𝑠−1) .

Note that if 𝑝 = 𝜇/𝑛 and 𝑛 ↑ ∞:

lim
𝑛↑∞

(1 + 𝜇
𝑛

(𝑠 − 1))
𝑛

= e𝜇(𝑠−1) .

We will come back to this observation later.

The next observation follows almost immediately from the definition of probability
generating functions.

Proposition 6.1. A probability generating function 𝐺 satisfies the following condi-

tions:

� 𝐺 is non-negative over [0, 1];
� 𝐺(0) = 𝑃{0}, 𝐺(1) = 1;
� 𝐺 is non-decreasing over [0, 1];
� 𝐺 is continuous and convex.

Proof. Properties 1), 2) and 3) are obvious: 𝐺 is a convex combination of non-negative,
non-decreasing, continuous and convex functions.

6.3 Inversion formula

Generatingfunctionology lies at the crossing between combinatorics, real analysis, complex
analysis, and probability theory. Defining PGF as a power series brings within probability
theory a collection of theorems that facilitate the identification of probability distributions
or that connect integrability properties of the probability distribution with smoothness
properties of the PGF.

Keep in mind that a generating function defines a function from the set of complex
numbers ℂ to ℂ:

𝐺(𝑧) =
∞

∑
𝑛=0

𝑝(𝑛)𝑧𝑛 for all 𝑧 ∈ ℂ such that the series converges .

Characterizing the domain of a function defined in that way is crucial. The next propo-
sition is at the core of Power Series theory.

Proposition 6.2. The radius of convergence of the generating function 𝐺

𝐺(𝑧) = ∑
𝑛∈ℕ

𝑝(𝑛)𝑧𝑛, 𝑧 ∈ ℂ
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CHAPTER 6. CHARACTERIZATIONS OF DISCRETE PROBABILITY DISTRIBUTIONS

is the unique 𝑅 ∈ [0, ∞) ∪ {+∞} such that:

� for every 𝑧 ∈ ℂ with |𝑧| > 𝑅, the series ∑𝑛∈ℕ 𝑝(𝑛)𝑧𝑛 diverges.

� for every 𝑧 ∈ ℂ with |𝑧| < 𝑅, the series ∑𝑛∈ℕ 𝑝(𝑛)𝑧𝑛 is absolutely convergent.

The opend disk {𝑧 ∶ 𝑧 ∈ ℂ, |𝑧| < 𝑅} is called the disk of convergence of 𝐺. The

circle {𝑧 ∶ 𝑧 ∈ ℂ, |𝑧| = 𝑅} is called the circle of convergence of 𝐺.

Proof.

Hadamard’s rule allows for fast determination of the radius of convergence:

Proposition 6.3 (Hadamard’s rule). The radius of convergence 𝑅 of probability

generating function 𝐺(𝑧) = ∑𝑛∈ℕ 𝑝(𝑛)𝑧𝑛 satisfies

1
𝑅

= lim sup
𝑛

(𝑝(𝑛))1/𝑛 .

The radius of convergence of a probability generating function is always at least 1.

The radius of convergence contains qualitative information about tail behavior:

• For Poisson distributions, the radius of convergence is infinite. This reflects the fast
decay of the tail probability of Poisson distributions.

• For geometric distributions, 𝑝(𝑛) = 𝑞(1 − 𝑞)𝑛−1, the radius of convergence is
1/(1 − 𝑞).

• For power law distributions like 𝑝(𝑛) = 𝑛−𝑟/𝜁(𝑟) with 𝑟 > 1, the radius of conver-
gence is exactly 1.

Proof.

Just knowing the radius of convergence of a function defined by a Power Series expan-
sion tells us about the smoothness properties of the function.

If 𝐺 is defined as a power series 𝐺(𝑧) = ∑𝑛∈ℕ 𝑎𝑛𝑧𝑛 its (complex) derivative is 𝐺′(𝑧) =
∑𝑛∈ℕ(𝑛 + 1)𝑎𝑛+1𝑧𝑛. The derivative 𝐺′ and 𝐺 have the same radius of convergence.

Proof.

This general statement about power series entails a very useful corollary for probability
generating functions.
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6.4. SUMS OF INDEPENDENT RANDOM VARIABLES AND PROBABILITY
GENERATING FUUNCTIONS

Corollary 6.1 (Inversion formula). Let 𝑔 be the probability generating function

associated with the probability mass function 𝑓. Then 𝑔 is infinitely many times

differentiable over [0, 1) with derivatives

𝑔(𝑛)(𝑠) =
∞

∑
𝑘=𝑛

𝑘!
(𝑘 − 𝑛)!

× 𝑓(𝑘)𝑠𝑘−𝑛 ,

more specifically:

𝑔(𝑛)(0) = 𝑛! × 𝑓(𝑛) .

A probability distribution over ℕ is characterized by its probability generating func-

tion.

Proof. The property is true for 𝑛 = 0.
Assume it holds for all integers up to 𝑛. For 𝑠 ∈ [0, 1) and |ℎ| < 1 − 𝑠 − 𝛿 where 𝛿 is a

small positive number,

𝑔(𝑛)(𝑠 + ℎ) − 𝑔(𝑛)(𝑠)
ℎ

=
∞

∑
𝑘=𝑛

𝑘!
(𝑘 − 𝑛)!

× 𝑓(𝑘)(
𝑘−𝑛−1
∑
𝑗=0

(𝑠 + ℎ)𝑘−𝑛−1−𝑗𝑠𝑗)

The absolute value of the internal sum is smaller than (𝑘 − 𝑛)(1 − 𝛿)𝑘−𝑛−1. As
∞

∑
𝑘=𝑛

𝑘!
(𝑘 − 𝑛 − 1)!

× 𝑝(𝑘) × (1 − 𝛿)𝑘−𝑛−1 < ∞

for all 0 < 𝛿 < 1. By the Dominated Convergence Theorem,

lim
ℎ→0

𝑔(𝑛)(𝑠 + ℎ) − 𝑔(𝑛)(𝑠)
ℎ

=
∞

∑
𝑘=𝑛+1

𝑘!
(𝑘 − 𝑛 − 1)!

× 𝑓(𝑘) × 𝑠𝑘−𝑛−1 .

Example 6.2. The Probability Generating Function of a Poisson distribution with parame-
ter 𝜇 equals exp(𝜇(𝑠 − 1)).

𝑔(𝑠) =
∞

∑
𝑘=0

e−𝜇 𝜇𝑘

𝑘!
𝑠𝑘

= e−𝜇 × e𝜇𝑠 .

If we meet a probability distribution with such a PGF, we know it is a Poisson distribution
(with parameter 𝜇).

6.4 Sums of independent random variables and probability

generating fuunctions

Probability Generating Functions provide us with a handy tool to investigate sums of
independent random variables.
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Proposition 6.4. Let 𝑋, 𝑌 be independent integer-valued random variable, with

probability generating functions 𝐺𝑋 and 𝐺𝑌. The probability generating function

𝐺𝑋+𝑌 of 𝑋 + 𝑌 is 𝐺𝑋 × 𝐺𝑌:

𝐺𝑋+𝑌 = 𝐺𝑋 × 𝐺𝑌 .

Proof. The proof relies on the fact that non-negative convergent series are commutatively
convergent.

For any 𝑛:

{𝜔 ∶ 𝑋(𝜔) + 𝑌 (𝜔) = 𝑛} = ∪𝑛
𝑘=0 {𝜔 ∶ 𝑋(𝜔) = 𝑘 et 𝑌 (𝜔) = 𝑛 − 𝑘} .

The union on the right-hand-side is a disjoint union.

∞
∑
𝑛=0

ℙ{𝑋 + 𝑌 = 𝑛} × 𝑠𝑛 =
∞

∑
𝑛=0

(
𝑛

∑
𝑘=0

ℙ{𝑋 = 𝑘} × ℙ{𝑌 = 𝑛 − 𝑘}) 𝑠𝑛

=
∞

∑
𝑘=0

ℙ{𝑋 = 𝑘}𝑠𝑘
∞

∑
𝑛≥𝑘

ℙ{𝑌 = 𝑛 − 𝑘}𝑠𝑛−𝑘

= 𝐺𝑋(𝑠) × 𝐺𝑌(𝑠) .

In measure theoretical language, the proposition is a consequence of the Tonelli-Fubini
Theorem:

𝐺𝑋+𝑌(𝑠) = 𝔼 [𝑠𝑋+𝑌]
= 𝔼 [𝑠𝑋 × 𝑠𝑌]

= ∫
ℝ2

𝑠𝑥𝑠𝑦d𝑃𝑋 ⊗ 𝑃𝑌(𝑥, 𝑦)

= ∫
ℝ

∫
ℝ

𝑠𝑥𝑠𝑦d𝑃𝑋(𝑥)d𝑃𝑌(𝑦)

= ∫
ℝ

𝑠𝑦 ∫
ℝ

𝑠𝑥d𝑃𝑋(𝑥)d𝑃𝑌(𝑦)

= ∫
ℝ

𝑠𝑦𝐺𝑋(𝑠)d𝑃𝑌(𝑦)

= 𝐺𝑋(𝑠) × 𝐺𝑌(𝑠) .

Example 6.3. If 𝑋 and 𝑌 are independent Poisson random variables with parameters 𝜇 and
𝜈, then 𝐺𝑋+𝑌(𝑠) = exp(𝜇(𝑠 − 1)) × exp(𝜈(𝑠 − 1)) = exp((𝜇 + 𝜈)(𝑠 − 1)). This is another
proof that 𝑋 + 𝑌 is Poisson distributed with parameter 𝜇 + 𝜈.
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6.5. SMOOTHNESS AND INTEGRABILITY

6.5 Smoothness and integrability

A PGF is infinitely many times differentiable inside the (open) disk of convergence. If
the radius of convergence is larger than 1 (as for Poisson or geometric distributions), this
entails that the PGF is infinitely many times differentiable at 1, If the radius of convergence
is exactly 1, the differentiability on the circle of convergence is not prescribed by general
theory.

Theorem 6.1 (Integrability and probability generating functions). Let 𝑋 be an

integer-valued random variable, with probability generating functions 𝑓, then𝔼𝑋𝑝 <
∞ iff 𝑓 is 𝑝-times differentiable at 1 and

𝑓 (𝑝)(1) = 𝔼 [𝑋(𝑋 − 1) … (𝑋 − 𝑝 + 1)] .

Proof. Assume that 𝐺 is 𝑝-times differentiable on the left at 1.
We need to establish that |𝑋| is 𝑝-integrable.
Assume that |𝑋| is 𝑝-integrable.

The next question arises quickly: when is a function from [0, 1] to [0, ∞) a probability
generating function? This question is addressed later in a broader perspective.
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Chapter 7

Product distributions

In this lesson, we construct product measures. We start with twomeasured spaces (𝒳, ℱ, 𝜇)
and (𝒴, 𝒢, 𝜈).

Our goal is to build a measure space (𝒳 × 𝒴, ℋ, 𝜌) and two measurable functions
𝑋 ∶ 𝒳 × 𝒴 → 𝒳 and 𝑌 ∶ 𝒳 × 𝒴 → 𝒴 with the additional requirements that

𝜇 = 𝜌 ∘ 𝑋−1 and 𝜈 = 𝜌 ∘ 𝑌 −1

as well as

𝜌(𝐴 × 𝐵) = 𝜇(𝐴) × 𝜈(𝐵) ∀𝐴 ∈ ℱ, 𝐵 ∈ 𝒢 .

Note that requiring 𝑋 and 𝑌 to be measurable is prematurate: we have not defined the
𝜎-algebra ℋ over 𝒳 × 𝒴.

7.1 Product 𝜎-algebras

In order to achieve our goal, we first define a 𝜎-algebra ℋ of subsets of 𝒳 × 𝒴. We use the
so-called product 𝜎-algebra.

Definition 7.1 (Product 𝜎-algebra). Let (𝒳, ℱ) and (𝒴, 𝒢) be twomeasurable spaces,
the product 𝜎-algebra ℱ ⊗ 𝒢 is the 𝜎-algebra of subsets of 2𝒳×𝒴 that is generated by
the so-called rectangles:

{𝐴 × 𝐵 ∶ 𝐴 ∈ ℱ, 𝐵 ∈ 𝒢} .

In words,
ℱ ⊗ 𝒢 = 𝜎 (ℱ × 𝒢)

Proposition 7.1. The product 𝜎-algebra makes the functions 𝑋 and 𝑌 (sometimes

called coordinate projections) measurable.
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Exercise 7.1. Check Proposition 7.1.

Exercise 7.2. Check that the Borel 𝜎-algebra over ℝ2 (the 𝜎-algebra generated by
open subsets of 𝑚𝑎𝑡ℎ𝑏𝑏𝑅2) can be described as a product 𝜎-algebra (the 𝜎-algebra
generated by the cartesian product of ℬ(ℝ) with itself). In words

ℬ(ℝ2) = 𝜎 (ℬ(ℝ) × ℬ(ℝ))

7.2 Product measures

Once we are equipped with the product 𝜎-algebras, we can proceed to the definition of
product measures.

Recall the definition of 𝜎-finite measures from Section 2.6).
A measure 𝜇 on (Ω, ℱ) is 𝜎-finite iff there exists (𝐴𝑛)𝑛 with Ω ⊆ ∪𝑛𝐴𝑛 and 𝜇(𝐴𝑛) <

∞ for each 𝑛.
Finite measures (this encompasses probability measures) are 𝜎-finite. Lebesguemeasure

is 𝜎-finite. The counting measure on ℝ is not 𝜎-finite.

Theorem 7.1. Let (𝒳, ℱ, 𝜇) and (𝒴, 𝒢, 𝜈) be two measured spaces where 𝜇, 𝜈 are

𝜎-finite.
Then there exists a unique 𝜎-finite measure 𝛼 on 𝒳 × 𝒴 endowed with the product

𝜎-algebra ℱ ⊗ 𝒢 = 𝜎(ℱ × 𝒢) that satisfies

𝛼(𝐴 × 𝐵) = 𝜇(𝐴) × 𝜈(𝐵) ∀𝐴 ∈ ℱ, 𝐵 ∈ 𝒢 .

Moreover, for all 𝐸 ∈ ℱ ⊗ 𝒢,

1. for each 𝑥 ∈ 𝒳, 𝑦 ↦ 𝕀𝐸(𝑥, 𝑦) is 𝒢-measurable;

2. 𝑥 ↦ ∫
𝒴

𝕀𝐸(𝑥, 𝑦) d𝜈(𝑦) is ℱ-measurable;

3. for each 𝑦 ∈ 𝒴, 𝑥 ↦ 𝕀𝐸(𝑥, 𝑦) is ℱ-measurable;

4. 𝑦 ↦ ∫
𝒳

𝕀𝐸(𝑥, 𝑦) d𝜇(𝑥) is 𝒢-measurable,

and the following holds:

∫
𝒳×𝒴

𝕀𝐸 d𝛼 = ∫
𝒳

( ∫
𝒴

𝕀𝐸(𝑥, 𝑦) d𝜈(𝑦)) d𝜇(𝑥)

= ∫
𝒴

( ∫
𝒳

𝕀𝐸(𝑥, 𝑦) d𝜇(𝑥)) d𝜈(𝑦)

where the three integrals are either finite or infinite.

Measure 𝛼 is called a product measure, it is sometimes denoted by 𝜇 ⊗ 𝜈.
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7.3. TONELLI-FUBINI THEOREM

Remark 7.1. Assuming that both 𝜇 and 𝜈 are 𝜎-finite is essential. Choose 𝜇 as the counting
measure on [0, 1] and 𝜈 as the Lebesgue measure on [0, 1]. Consider the diagonal 𝐸 =
{(𝑥, 𝑥) ∶ 𝑥 ∈ [0, 1]}. The set 𝐸 belongs to ℬ(ℝ) ⊗ ℬ(ℝ) = ℬ(ℝ2) (check this). But
interchanging the order of integration leads to different results:

1 = ∫
[0,1]

( ∫
[0,1]

𝕀𝐸(𝑥, 𝑦) d𝜇(𝑥)) d𝜈(𝑦)

0 = ∫
[0,1]

( ∫
[0,1]

𝕀𝐸(𝑥, 𝑦) d𝜈(𝑦)) d𝜇(𝑥)

Theorem 7.1 contains three statements:

a. existence of a measure over (𝒳 × 𝒴, ℱ ⊗ 𝒢) that satisfies the product property over
rectangles;

b. uniqueness of this measure;
c. the possibility of computing the measure of 𝐸 ∈ ℱ ⊗ 𝒢 by iterated integration in

arbitrary order.

The first statement (existence) is proved using an extension theorem, the second state-
ment (unicity) follows from a monotone class argument (Theorem 2.4)): rectangles form a
generating 𝜋-class, so the case where both 𝜇 and 𝜈 are finite measure is settled. If either 𝜇
or 𝜈 is just 𝜎-finite, consider restrictions to rectangles with finite measure, and proceed by
approximation. The third statement trivially holds for rectangles.

Remark 7.2. If𝜇, 𝜈 are probabilitymeasures, then the productmeasure𝜇⊗𝜈 is a probability
measures, it is called a product probability measure.

7.3 Tonelli-Fubini theorem

In this section, we consider product measures that are built from 𝜎-finite measures as in
Theorem 7.1). The Tonelli-Fubini Theorem shows that (under mild conditions) integration
with respect to a product measure reduces to iterated integration over the component
measures.

Theorem 7.2 (Tonelli-Fubini). Let be (𝒳, 𝒜) and (𝒴, ℬ) two measurable spaces,

𝜇 and 𝜈 two 𝜎-finite measures on these spaces, 𝜇 ⊗ 𝜈 the product measure, and 𝑓
a 𝒜 ⊗ ℬ-measurable real function such as ∫ |𝑓|d𝜇 ⊗ 𝜈 < 0. The the following

properties are satisfied:

i. ∀𝑥 ∈ 𝒳, 𝑦 ↦ 𝑓(𝑥, 𝑦) is ℬ-measurable.

ii. The function 𝑥 ↦ ∫
𝒴

𝑓(𝑥, 𝑦)d𝜈(𝑦) is 𝒜-measurable, finite 𝜇- almost every-

where and

∫
𝒳×𝒴

𝑓d𝜇 ⊗ 𝜈 = ∫
𝒳

[∫
𝒴

𝑓(𝑥, 𝑦)d𝜈(𝑦)] d𝜇(𝑥)
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Proof. Proof can foud in
The proof consists in establishing the statement for larger and larger classes of measur-

able functions.
Note first that Theorem 7.1 settles the case for indicators ofmeasurable subsets of 𝒳×𝒴.
From this observation, using linearity, simple positive functions are handled. Then

settling the case of non-negative measurable functions over 𝒳 × 𝒴 uses a monotone conver-
gence argument (Theorem 3.1).

The general case is handled by decomposing the measurable function into the sum of a
positive part and a negative part.

The following characterization of the expectation of non-negative random variables as
the integral of the tail function is a simple consequence of the Tonelli-Fubini Theorem.

Proposition 7.2 (IPP formula). Let 𝑋 be a non-negative real-valued random vari-

able, then

𝔼𝑋 = ∫
∞

0
𝑃{𝑋 > 𝑡}d𝑡

Proof.

𝔼𝑋 = ∫
Ω

𝑋(𝜔) d𝑃(𝜔)
= ∫

Ω
( ∫

[0,∞)
𝕀𝑋(𝜔)>𝑡d𝑡) d𝑃(𝜔)

= ∫
[0,∞)

( ∫
Ω

𝕀𝑋(𝜔)>𝑡 d𝑃(𝜔))d𝑡

= ∫
[0,∞)

(𝑃{𝜔 ∶ 𝑋(𝜔) > 𝑡})d𝑡

7.4 Joint distributions, independence and product distributions

Let the two random variables 𝑋, 𝑌 map (Ω, ℱ) to (𝒳, 𝒢) and (𝒴, ℋ). Equip (Ω, ℱ) with
probability distribution 𝑃. Let 𝑄𝑋 = 𝑃 ∘ 𝑋−1 and 𝑄𝑌 = 𝑃 ∘ 𝑌 −1 be the two image
distributions (called themarginal distributions). Wemay define amapping 𝑍 ∶ Ω → 𝒳×𝒴
by 𝑍(𝜔) = (𝑋(𝜔), 𝑌 (𝜔)), this mapping is ℱ/𝜎(𝒢 × ℋ) mesurable.

Let 𝑄 be the joint distribution of 𝑍 = (𝑋, 𝑌 ) under 𝑃, that is the probability distribu-
tion over 𝒳 × 𝒴 endowed with 𝜎(𝒢 × ℋ) that is uniquely defined by

𝑄(𝐴 × 𝐵) = 𝑃{𝜔 ∶ 𝑋(𝜔) ∈ 𝐴, 𝑌 (𝜔) ∈ 𝐵} .

Note that 𝑄 is not necessarily a product distribution.
The next (trivial) proposition tells us that two random variables are independent iff

their joint distribution is a product distribution (in fact the product distribution defined
by the two marginal distributions).

𝑋 ⟂⟂ 𝑌 under 𝑃 ⟺ 𝑄 = 𝑄𝑋 ⊗ 𝑄𝑌 ,
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in words, 𝑋 and 𝑌 are independent iff their joint distribution is the product of their
marginal distributions.

Proof. TODO: FIX THIS

7.5 Independence of collections of 𝜎-algebras

In many applications, independence between two 𝜎-algebras or a finite collection of 𝜎-
algebras is not enough. This is the case when deriving or using laws of large numbers. We
have to deal with a countable collection of independent random variables. In words, we have
to work with a countable collection of 𝜎-algebras and we need to elaborate a notion of a
countable collection of independent 𝜎-algebras.

Let (Ω, ℱ, 𝑃) be a probability space. Let 𝒢1, … , 𝒢𝑛, … be a countable colletion of
sub-𝜎-algebras.

The collection 𝒢1, … , 𝒢𝑛, … is said to be independent under 𝑃
if
every finite sub-collection is independent under 𝑃.

Example 7.1. Consider the uniform probability distribution over [0, 1], define 𝑋1, 𝑋2, …
by

𝑋𝑛(𝜔) = sign( sin (2𝑛+1𝜋𝜔))

then 𝑋1, … , 𝑋𝑛, … form a countable independent collection of random variables.

7.6 Infinite product spaces

In many modeling scenarios (random walks, branching processes, asymptotic statistics, …),
we rely on the availability of an infinite collection of independent random variables. While
it is (relatively) easy to come up with the notion of finite product probability spaces, the
notion of infinite product probability spaces is more puzzling. And this remains true even
if the individual components are finite probability spaces (for example {0, 1}, equiped with
powerset and uniform distribution).

Thinks of Ω𝑖 = {0, 1} and each 𝑃𝑖 has the balanced Bernoulli distribution. Let 𝜔 be
an infinite sequence of 𝑜 and 1, {𝜔} = ∏∞

𝑖=1{𝜔𝑖} is an infinite Cartesian product of events
with probability 1/2. What should be its probability in the infinite product probability
space? Is there a way to assign probabilities in a consistent way? If the answer is positive, is
there a unique way to perform this operation?

Definition 7.2 (Cylinder 𝜎-algebra). Let (Ω𝑛, ℱ𝑛)𝑛 be a countable collection of
measurable spaces, the cylinder 𝜎-algebra is the 𝜎-algebra of subsets of ∏∞

𝑛=1 Ω𝑛 that
is generated by subsets of the form:
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𝑚
∏
𝑛=1

𝐴𝑛 ×
∞
∏

𝑛=𝑚+1
Ω𝑛 with 𝐴𝑛 ∈ ℱ𝑛 for 𝑛 ≤ 𝑚

where 𝑚 is any integer. The subsets are called finite-dimensional rectangles or cylin-
ders.

Observe that cylinders form a 𝜋-class.
If each (Ω𝑛, ℱ𝑛) is endowed with a probability distribution, assigning a probability to

cylinders looks straightforward:

ℙ (
𝑚

∏
𝑛=1

𝐴𝑛 ×
∞
∏

𝑛=𝑚+1
Ω𝑛) =

𝑚
∏
𝑛=1

𝑃𝑛(𝐴𝑛) ×
∞
∏

𝑛=𝑚+1
𝑃𝑛(Ω𝑛) =

𝑚
∏
𝑛=1

𝑃𝑛(𝐴𝑛) .

The question is: does ℙ extends to the cylinder 𝜎-algebra? If an extension exists, is it
unique? The answer is yes.

Theorem 7.3 (Extension theorem (simple version)). Let (Ω𝑛, ℱ𝑛, 𝑃𝑛)𝑛 be a count-

able collection of probability spaces. Then there exists a unique probability distribution

ℙ on the cylindrical 𝜎-algebra that satisfy:

ℙ (
𝑚

∏
𝑛=1

𝐴𝑛 ×
∞
∏

𝑛=𝑚+1
Ω𝑛) =

𝑚
∏
𝑛=1

𝑃𝑛(𝐴𝑛)

for every finite sequence 𝐴1, … , 𝐴𝑚 in ℱ1 × … × ℱ𝑚.

7.7 Bibliographic remarks

This material covering this lesson can be found in any book on measure and integration
theory. Section 4.4 from (Dudley, 2002) is dedicated to product measures.

Complete proofs of the Tonelli-Fubini Theeorem can be found in (Dudley, 2002).
The existence theorem for infinite product probabilities is from Section 8.2 from (Dud-

ley, 2002). A full proof of the Theorem can be found there.
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Chapter 8

Independence and product spaces

8.1 Roadmap

Independence between events, random variables andmore generally 𝜎-algebras is at the core
of many constructs and results in probability theory. Law of large numbers, central limit
theorems and concentration inequalities are first stated and proved when handling possibly
infinite collections of independent random variables. Results that can be established for
collections of independent random variables constitute a gold standard. A large part of
Martingale theory, or Markow chain theory is dedicated to the extension of laws of large
numbers, central limit theorems, concentration inequalities.

First, we recall the definition of independent events. This notion is elementary, helpful.
In Section 8.3), the notion of independence is extended to 𝜎-algebras. and to random
variables. We observe that checking independence between 𝜎-algebras is facilitated by The
monotone class theorem (Theorem 2.4)). Finally, we extend the notion of indepedence to
countable collections of 𝜎-algebras.

In many circumstances, we take for granted the availability of a countably infinite
collection of independent random variables over some probability space. For example,
we consider the possibility of rolling a dice infinitely many times, and we assume that the
outcomes are independent. This is legitimate. But checking that this is legitimate, that
is proving the existence of such rich probability spaces is non-trivial. Building product
measures and product probability distributions is a first step in this direction.

In Section 7.2) we define product 𝜎-algebras and product measures. In Section 7.3) we
state the Tonelli-Fubini Theorem. This Theorem is a fundamental tool when handling
multiple integrals, it plays an important role when computing expectations in product
spaces. In Section 7.4), we outline the way building product spaces allows to build collec-
tions of independent random variables. In Section 7.5) we consider product of countable
collections of probability spaces. We introduce the notion of cylinder 𝜎-algebra and state
the Kolmogorov consistency theorem. This defines the framework of the classical limit
results of probability theory.
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8.2 Independence of two events

We recall definitions from Introductory Lesson Chapter 1, ?@sec-random-variables-and-
independence)

Independence of two events

Let 𝑃 be a probability distribution on (Ω, ℱ). Let 𝐴, 𝐵 ∈ ℱ be two events.
Events 𝐴 and 𝐵 are said to be independent under 𝑃 (𝐴 ⟂⟂ 𝐵 under 𝑃) if and only if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵).

Exercise 8.1. Prove the following statements

• 𝐴 and 𝐵 are independent if and only if 𝐴𝑐 = Ω ∖ 𝐴 and 𝐵𝑐 = Ω ∖ 𝐵 are
independent.

• 𝐴 and 𝐵 are independent if and only if 𝐴 and 𝐵𝑐 are independent.
• ∅ is independent from any event.

Exercise 8.2. Express 𝑃(𝐴 ∪ 𝐵) in terms of 𝑃(𝐴) and 𝑃(𝐵) when 𝐴 ⟂⟂ 𝐵.

Exercise 8.3. In a Poissonized random allocation experiment, we first pick 𝑁 from a
Poisson distribution with parameter 𝜇, then we we throw 𝑁 balls independently at
random into 𝑚 urns. The probability that one ball lands into urn 𝑗 is 𝑝𝑗 (we have
∑𝑛

𝑗=1 𝑝𝑗 = 1).
Denote by 𝑌𝑗 the number of balls in urn 𝑗 (𝑗 ≤ 𝑚).
Check that the events {𝑌𝑗 ≤ 𝑟}, and {𝑌𝑘 ≤ 𝑠} for 𝑗 ≠ 𝑘 and 𝑟, 𝑠 ∈ ℕ are indepen-
dent.

Exercise 8.4. Express 𝑃(𝐴 ∪ 𝐵) in terms of 𝑃(𝐴) and 𝑃(𝐵) when 𝐴 ⟂⟂ 𝐵.

Exercise 8.5. Is it possible to have 𝐴 ⟂⟂ 𝐵, 𝐵 ⟂⟂ 𝐶, and 𝐴 ⟂⟂ 𝐶 while not having
𝐴 ∩ 𝐵 ⟂⟂ 𝐶?

8.3 Independence of 𝜎-algebras and random variables

Independence of 𝜎-algebras

Let 𝑃 be a probability distribution on (Ω, ℱ). Let 𝒢 and ℋ be two sub-𝜎-algebras of ℱ.
The sub-𝜎-algebra 𝒢 and ℋ are independent under 𝑃 iff for any couple 𝐴 ∈ 𝒢, 𝐵 ∈ ℋ, 𝐴
is independent from 𝐵 under 𝑃.

The two definitions of independence are consistent. This has to be checked.
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Exercise 8.6. Given a probability space (Ω, ℱ, 𝑃) and two events 𝐴 and 𝐵, check
that 𝐴 and 𝐵 are independent under 𝑃 iff 𝜎(𝐴) and 𝜎(𝐵) are independent under 𝑃.

Two random variables 𝑋 and 𝑌 over the same probability space are independent iff the
𝜎-algebras generated by the two variables are independent. We denote independence of 𝑋
and 𝑌 by 𝑋 ⟂⟂ 𝑌. Again this is consistent: two events are independent iff their indicator
functions are independent.

Exercise 8.7. Let 𝑃 be a probability distribution on (Ω, ℱ). Let 𝐵 be an event from
𝒢. Let 𝒜 ⊆ ℱ be defined by

𝒜 = {𝐴 ∶ 𝐴 ∈ ℱ, 𝐴 is independent from 𝐵 under 𝑃} .

Prove that 𝒜 is a 𝜎-algebra.

Checking whether two sub-𝜎-algebras 𝒢 and ℋ are independent or not looks like a
difficult task. Fortunately, we do not need to check the independence of every pair of events
from 𝒢 and ℋ. It suffices to check independence from ℋ for a well-chosen collection of
events that generates 𝒢.

Theorem 8.1. Let (Ω, ℱ, 𝑃) be a probability space. Let 𝒢, ℋ be two sub-𝜎-algebras
of ℱ. Let 𝒞 and 𝒞′ be two 𝜋-classes such that 𝜎(𝒞) = 𝒢 and 𝜎(𝒞′) = ℋ. The two

statements are equivalent

� 𝒢 ⟂⟂ ℋ under 𝑃;
� For every 𝐴 ∈ 𝒞, every 𝐴′ ∈ 𝒞′, 𝑃(𝐴 ∩ 𝐴′) = 𝑃(𝐴) × 𝑃(𝐴′).

The proof of Theorem 8.1 is another application of the monotone class theorem Theo-
rem 2.4.

Proof. Let 𝐴 ∈ 𝒢. Define ℰ as

ℰ = {𝐵 ∶ 𝐵 ∈ ℋ, 𝐴 ⟂⟂ 𝐵} .

The definition of event independence allows us to check that ℰ is a 𝜆-class (a monotone
class). Hence if 𝐴 ∈ 𝒞, 𝐴 is independent from every event from the the smallest 𝜆-class
containing 𝒞′. This entails that every event in 𝒞 is independent from every event in ℋ.
Similarly every event in 𝒞′ is independent from every event in 𝒢.

Now, the set of events from 𝒢 that is independent from every event in ℋ is a 𝜆-class
(by the same line of reasoning as above). As this 𝜆-class contains 𝒞, by the monotone class
Lemma again, it contains 𝜎(𝒞) = 𝒢.

To check the independence of two real valued random variables, it is enough to check
that the joint cumulative distribution function is the product of the two marginal distribu-
tion functions.
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Corollary 8.1. Let 𝑋 and 𝑌 be two real random variables on (Ω, ℱ, 𝑃), 𝑋 and 𝑌
are independent (𝑋 ⟂⟂ 𝑌) under 𝑃 iff event {𝑋 ≤ 𝑡} is independent from event

{𝑌 ≤ 𝑠} under 𝑃 for all 𝑠, 𝑡 ∈ ℚ.

Proof. Events of the form {𝑋 ≤ 𝑡}, 𝑡 ∈ ℝ form a 𝜋 class generating 𝜎(𝑋).

The notion of independence extends to countable collection of events, 𝜎-algebras and
random variables.

Definition 8.1 (Independence of countable collections). Let 𝑃 be a probability distri-
bution on (Ω, ℱ). Let (𝒢𝑖)𝑖∈𝐼⊆𝒩 be sub-𝜎-algebras of ℱ. The collection (𝒢𝑖)𝑖∈𝐼⊆𝒩
is independent in (Ω, ℱ, 𝑃) iff for any finite sub-collection 𝐽 ⊆ 𝐼, for any sequence
of events (𝐴𝑗)𝑗∈𝐽 with 𝐴𝑗 ∈ 𝒢𝑗 for all 𝑗 ∈ 𝐽,

𝑃(∩𝑗∈𝐽𝐴𝑗) = ∏
𝑗∈𝐽

𝑃(𝐴𝑗) .
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Chapter 9

Absolutely continuous probability
measures

9.1 Densities and absolute continuity

Beyond discrete distributions, the simplest probability distributions are defined by a density
function with respect to a (𝜎-finite) measure. This encompasses the distributions of the
so-called continuous random variables.

Definition 9.1 (Absolute continuity). Let 𝜇, 𝜈 be two positive measures on measur-
able space (Ω, ℱ), 𝜇 is said to be absolutely continuous with respect to 𝜈 (denoted by
𝜇 ⊴ 𝜈) iff for every 𝐴 ∈ ℱ with 𝜈(𝐴) = 0, we also have 𝜇(𝐴) = 0.

If 𝜇, 𝜈 are two probability distributions, and 𝜇 ⊴ 𝜈, then any event which is impossible
under 𝜈 is also impossible under 𝜇.

Exercise 9.1. Answer the two questions:

• Is the counting measure on ℝ absolutely continuous with respect to Lebesgue
measure?

• Is the converse true?

Exercise 9.2. Check that absolute continuity is a transitive relationship.

The next theorem has far-reaching practical consequences.

Theorem 9.1 (Radon-Nikodym). Let 𝜇, 𝜈 be two positive measures on measurable

space (Ω, ℱ). Assume 𝜈 is 𝜎-finite. If 𝜇 ⊴ 𝜈, then there exists a measurable function
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𝑓 from Ω to [0, ∞) such that for all 𝐴 ∈ ℱ,

𝜇(𝐴) = ∫
𝐴

𝑓(𝜔)d𝜈(𝜔) = ∫ 𝕀𝐴𝑓d𝜈 .

The function 𝑓 is called a version of the density of 𝜇 with respect to 𝜈.

The density is also called the Radon-Nikodym derivative of 𝜇 with respect to 𝜈. It is
sometimes denoted by d𝜇

d𝜈 .

Remark 9.1. The 𝜎-finiteness assumption is crucial. If we choose 𝜇 as Lebesgue measure
and 𝜈 as the counting measure, 𝜈 is not 𝜎-finite, 𝜇(𝐴) > 0 implies 𝜈(𝐴) = ∞ which we
may consider as larger than 0. Nevertheless, Lebesgue measure has no density with respect
to the counting measure.

In the next sections, we investigate probability distributions over (ℝ, ℬ(ℝ)) that are
absolutely continuous with respect to Lebesgue measure.

Proposition 9.1. If 𝜌 ⊴ 𝜇 ⊴ 𝜈, 𝑓 is a density of 𝜌 with repsect to 𝜇 while 𝑔 is a density

of 𝜇 with respect to 𝜈, then 𝑓𝑔 is a density of 𝜌 with respect to 𝜈.

Exercise 9.3. Prove proposition 9.1.

9.2 Exponential distribution

The exponential distribution shows up in several areas of probability and statistics. In
reliability theory, its memoryless property make it a borderline case. In the theory of point
processes, the exponential distribution is connected with Poisson Point Processes. It is also
important in extreme value theory.

The exponential distribution with intensity parameter 𝜆 > 0 is defined by its desnsity
with respect to Lebesgue measure on [0, ∞):

𝑥 ↦ 𝜆e−𝜆𝑥 .

The reciprocal of the intensity parameter is called the scale parameter.
Note that geometric and exponential distributions are connected: if 𝑋 is exponentially

distributed, then ⌈𝑋⌉ is geometrically distributed. For 𝑘 ≥ 1:

𝑃{⌈𝑋⌉ ≥ 𝑘} = 𝑃{𝑋 > 𝑘 − 1} = e−𝜆(𝑘−1) .

Exercise 9.4. Check that 𝑥 ↦ 𝜆e−𝜆𝑥 is a density probability over [0, ∞).
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Exercise 9.5. Compute the tail function and the cumulative distribution function of
the exponential distribution function with parameter 𝜆.

Exercise 9.6. Let 𝑋1, … , 𝑋𝑛 be i.i.d. exponentially distributed. Characterize the
distribution ofmin(𝑋1, … , 𝑋𝑛).

If 𝑋 is exponentially distributed with scale parameter 𝜎, what is the distribution of 𝑎𝑋?
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b. scale=1/2

c. scale=2

Figure 9.1: Exponential densities with different parameters: scales 1, 2, 1/2 or equivalently
intensities 1, 1/2, 2. Expectation equals scale,
variance equals squared scale.

9.3 Gamma distribution

Sums of independent exponentially distributed random variables are not exponentially
distributed. The family of Gamma distributions encompasses the family of exponential
distributions. It is stable under addition and satisfies

Recall Euler’s Gamma function:

Γ(𝑡) = ∫
∞

0
𝑥𝑡−1e−𝑥d𝑥 for 𝑡 > 0 .

The Gamma distribution with shape parameter 𝑝 > 0 and intensity parameter 𝜆 > 0
is defined by its density with respect to Lebesgue measure on [0, ∞):

𝑥 ↦ 𝜆𝑝 𝑥𝑝−1

Γ(𝑝)
e−𝜆𝑥 .
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The reciprocal of the intensity parameter is called the scale parameter.

Exercise 9.7. Check that 𝑥 ↦ 𝜆𝑝 𝑥𝑝−1

Γ(𝑝) e
−𝜆𝑥 is a density probability over [0, ∞).

Exercise 9.8. If 𝑋 is Gamma distributed with shape parameter 𝑝 and scale parameter
𝜎, what is the distribution of 𝑎𝑋?
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Figure 9.2: Gamma densities with different parameters: scales 1, 1, 1/3, 1, 2 and shapes
1, 2, 3, 5, 5/2. Expectation equals shape times scale,
variance equals shape times squared scale.

9.4 Univariate Gaussian distributions

Gaussian distributions play a central role in Probability theory, Statistics, Information
theory, and Analysis.

The Gaussian or normal distribution with mean 𝜇 ∈ ℝ and variance 𝜎2, 𝜎 > 0 has
density

𝑥 ↦ 1√
2𝜋𝜎

e− (𝑥−𝜇)2

2𝜎2 for 𝑥 ∈ ℝ .

The standard Gaussian density is defined by 𝜇 = 0, 𝜎 = 1.

Exercise 9.9. Check that 𝑥 ↦ e−𝑥2/2
√

2𝜋 is a probability density over ℝ.
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Exercise 9.10. If 𝑋 is distributed according to a standard Gaussian density, what is
the distribution of 𝜇 + 𝜎𝑋?

Exercise 9.11. If 𝑋 is distributed according to a standard Gaussian density, show that

Pr{𝑋 > 𝑡} ≤ 1
𝑡
e−𝑡2/2
√

2𝜋
for 𝑡 > 0 .

0.0
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Figure 9.3: Gaussian densities. The location parameter 𝜇 coincides with the mean and the
median. The scale parameter is the standard deviation. The Inter-Quartile-Range (IQR) is
proportional to the standard deviation. If Φ← denotes the quantile function of 𝒩(0, 1)
then the interquartile range of 𝒩(𝜇, 𝜎2) is 𝜎(Φ←(3/4) − Φ←(1/4)) = 2𝜎Φ←(3/4).

9.5 Cumulative distribution functions and absolute continuity

If a cumulative distribution function is defined as the integral of some non-negative
Lebesgue integrable function, we know that the corresponding probability distribution is
absolutely continuous with respect to Lebesgue measure.

We may ask for a criterion that characterises the cumulative distribution function of
absolutely continuous probability distribution. Such a criterion is embodied by the next
definition. We overload the expression absolutely continuous.
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Definition 9.2 (Absolutely continuous functions). A real valued function 𝐹 on [𝑎, 𝑏]
is said to be absolutely continuous iff for all 𝛿 > 0 there exists 𝜖 > 0 such that for
every collection ([𝑎𝑖, 𝑏𝑖])𝑖≤𝑛 for non-overlapping sub-intervals ([𝑎𝑖, 𝑏𝑖] ⊆ [𝑎, 𝑏] for all
𝑖 ≤ 𝑛 and ℓ([𝑎𝑖, 𝑏𝑖] ∩ [𝑎𝑗, 𝑏𝑗]) = 0 for 𝑖 ≠ 𝑗 ) with ∑𝑖≤𝑛 |𝑏𝑖 − 𝑎𝑖| ≤ 𝜖,

∑
𝑖≤𝑛

|𝐹 (𝑏𝑖) − 𝐹(𝑎𝑖)| ≤ 𝛿

Absolute continuity, differentiability and integration of derivatives are connected by the
next Theorem. This Theorem tells us that a cumulative distribution function is absolutely
continuous in the sense of Definition Definition 9.2 iff the corresponding probability
distribution is absolutely continuous with respect to Lebesgue measure.

Theorem 9.2 (Fundamental Theorem of Calculus). A real valued function 𝐹 on

[𝑎, 𝑏] is absolutely continuous iff the next three conditions hold

1. The derivative 𝐹 ′ exists Lebesgue almost everywhere on [𝑎, 𝑏]
2. The derivative 𝐹 ′ is Lebesgue integrable

3. For every 𝑥 ∈ [𝑎, 𝑏], 𝐹(𝑥) − 𝐹(𝑎) = ∫
[𝑎,𝑏]

𝕀[𝑎,𝑥](𝑡)𝐹 ′(𝑡)d𝑡

9.6 Computing the density of an image probability distribution

Recall the change of variable formula in elementary calculus. If 𝜙 is monotone increasing
and différentiable from open 𝐴 to 𝐵 and 𝑓 is Riemann integrable over 𝐵, then

∫
𝐵

𝑓(𝑦) d𝑦 = ∫
𝐴

𝑓(𝜙(𝑥)) 𝜙′(𝑥) d𝑥

Exercise 9.12. Check the elementary change of variable formula.

The goal of this section is state a multi-dimensional generalization of this elementary
formula. This is the content of Theorem 9.4). This extension is then used to establish an
off-the-shelf formula for computing the density of an image distribution in Theorem 9.5).

Let us start with a uni-dimensional warm-up. When starting from the uniform distri-
bution on [0, 1] and applying a monotone differentiable transformation, the density of the
image measure is easily computed.

Exercise 9.13. Let𝜙 be differentiable and increasing on [0, 1], and let𝑃 be the uniform
distribution on [0, 1].
Check that 𝑃 ∘ 𝜙−1 has density 1

𝜙′∘𝜙← on 𝜙([0, 1]).

The next proposition extends this observation.
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If the real valued random variable 𝑋 is distributed according to 𝑃 with density 𝑓, and 𝜙
is monotone increasing and differentiable over supp(𝑃 ), then the probability distribution
of 𝑌 = 𝜙(𝑋) has density

𝑔 = 𝑓 ∘ 𝜙←

𝜙′ ∘ 𝜙←

over 𝜙( supp(𝑃 )).

Proof. By the fundamental theorem of calculus, the density 𝑓 is a.e. the derivative of the
cumulative distribution function 𝐹 of 𝑃.

The cumulative distribution function of 𝑌 = 𝜙(𝑋) satisfies:

𝑃{𝑌 ≤ 𝑦} = 𝑃{𝜙(𝑋) ≤ 𝑦}

= 𝑃{𝑋 ≤ 𝜙←(𝑦)}

= 𝐹 ∘ 𝜙←(𝑦)

Almost everywhere, 𝐹 ∘ 𝜙← is differentiable, and has derivative 𝑓∘𝜙←

𝜙′∘𝜙← in 𝜙(supp(𝑃 )), 0
elsewhere. and

𝑃{𝑌 ≤ 𝑦} = ∫
(−∞,𝑦]∩𝜙(supp(𝑃))

𝑓 ∘ 𝜙←(𝑢)
𝜙′ ∘ 𝜙←(𝑢)

d𝑢

The next corollary is as useful as simple.

Corollary 9.1. If the distribution of the real valued random variable 𝑋 has density 𝑓
then the distribution of 𝜎𝑋 + 𝜇 has density 1

𝜎𝑓( ⋅−𝜇
𝜎 ), .

Inunivariate calculus, it is easy to establish that if a function is continuous and increasing
over an open set, it is invertible and its inverse is continuous and increasing. If the function
is differentiable with positive derivative, its inverse is also differentiable. Moreover, the
differential and the differential of the inverse are related in transparent way.

The Global Inversion Theorem extends the preceding observation to the multivariate
setting.

Theorem 9.3 (Global Inversion Theorem). Let 𝑈 and 𝑉 be two non-empty open

subsets of ℝ𝑑. Let 𝜙 be a continuous bijective from 𝑈 to 𝑉. Assume furthermore that

𝜙 is continuously differentiable, and that 𝐷𝜙𝑥 is non-singular at every 𝑥 ∈ 𝑈.
Then, the inverse function 𝜙← is also continuously differentiable on 𝑉 and at every

𝑦 ∈ 𝑉:
𝐷𝜙←

𝑦 = (𝐷𝜙𝜙←(𝑦))
−1

.
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The Jacobian determinant of 𝜙 is the determinant of the matrix that represents the
differential. It is denoted by 𝐽𝜙. Recall that:

𝐽𝜙←(𝑦) = (𝐽𝜙(𝜙←(𝑦)))
−1

.

The multidimensional version of the change of variable formula is stated under the same
assumptions as the Global Inversion Theorem. We admit the next Theorem.

Theorem 9.4 (Geometric change of variable formula). Let 𝑈 and 𝑉 be two non-empty

open subsets of ℝ𝑑. Let 𝜙 be a continuous bijective from 𝑈 to 𝑉. Assume furthermore

that 𝜙 is continuously differentiable, and that 𝐷𝜙𝑥 is non-singular at every 𝑥 ∈ 𝑈.
Let ℓ denote the Lebesgue measure on ℝ𝑑.

For any a non-negative Borel-measurable function 𝑓:

∫
𝑈

𝑓(𝑥)dℓ(𝑥) = ∫ 𝑓(𝜙←(𝑦))∣𝐽𝜙←(𝑦)∣dℓ(𝑦) .

Moving from cartesian coordinates to polar/spherical coordinates is easy thanks to an
non-trivial application of Theorem 9.4).

The Image density formula is a corollary of the geometric change of variable formula.

Theorem 9.5 (Image density formula). Let 𝑃 have density 𝑓 over open 𝑈 ⊆ ℝ𝑑.

Let 𝜙 be bijective fron 𝑈 to 𝜙(𝑈) and 𝜙 be continuously differentiable over 𝑈 with

non-singular differential.

The density 𝑔 of the image distribution 𝑃 ∘ 𝜙−1 over 𝜙(𝑈) is given by

𝑔(𝑦) = 𝑓(𝜙←(𝑦)) × ∣𝐽𝜙←(𝑦)∣ = 𝑓(𝜙←(𝑦)) × ∣𝐽𝜙(𝜙←(𝑦))∣
−1

.

The proof of Theorem 9.5) from Theorem 9.4) is a routine application of the transfer
formula.

Proof. Let 𝐵 be a Borelian subset of 𝜙(𝑈). By the transfer formula:

𝑃{𝑌 ∈ 𝐵} = 𝑃{𝜙(𝑋) ∈ 𝐵}

= ∫
𝑈

𝕀𝐵(𝜙(𝑥))𝑓(𝑥)dℓ(𝑥) .

Now, we invoke Theorem 9.4):

∫
𝑈

𝕀𝐵(𝜙(𝑥))𝑓(𝑥)dℓ(𝑥) = ∫
𝜙(𝑈)

𝕀𝐵(𝜙(𝜙←(𝑦)))𝑓(𝜙←(𝑦))∣𝐽𝜙←(𝑦)∣dℓ(𝑦)

= ∫
𝜙(𝑈)

𝕀𝐵(𝑦)𝑓(𝜙←(𝑦))∣𝐽𝜙←(𝑦)∣dℓ(𝑦) .

This suffices to conclude that 𝑓 ∘ 𝜙←∣𝐽𝜙← ∣ is a version of the density of 𝑃 ∘ 𝜙−1 with respect
to Lebesgue measure over 𝜙(𝑈).
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9.7. APPLICATION: GAMMA-BETA CALCULUS

9.7 Application: Gamma-Beta calculus

The image density formula is applied to show a remarkable connexion between Gamma
and Beta distributions.

Proposition 9.2. Let 𝑋, 𝑌 be independent random variables distributed according

to Γ(𝑝, 𝜆) and Γ(𝑞, 𝜆) (the intensity parameter are identical). Let 𝑈 = 𝑋 + 𝑌 and

𝑉 = 𝑋/(𝑋 + 𝑌 ).
Then

a. The random variables 𝑈 and 𝑉 are independent.

b. Random variable 𝑈 is distributed according to Γ(𝑝 + 𝑞, 𝜆) while
c. 𝑉 is distributed according to Beta(𝑝, 𝑞).

Proof. The mapping 𝑓 ∶]0, ∞)2 →]0, ∞)×]0, 1[ defined by

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥
𝑥 + 𝑦

)

is one-to-one with inverse 𝑓←(𝑢, 𝑣) = (𝑢𝑣, 𝑢(1 − 𝑣)). The Jacobian matrix of 𝑓← at (𝑢, 𝑣)
is

( 𝑣 𝑢
(1 − 𝑣) −𝑢

)

with determinant −𝑢𝑣 − 𝑢 + 𝑢𝑣 = −𝑢. The joint image density at (𝑢, 𝑣) ∈]0, ∞)×]0, 1[ is

= 𝜆𝑝+𝑞 (𝑢𝑣)𝑝−1

Γ(𝑝)
(𝑢(1 − 𝑣))𝑞−1

Γ(𝑞)
e−𝜆(𝑢𝑣+𝑢(1−𝑣))𝑢

= (𝜆𝑝+𝑞 𝑢𝑝+𝑞−1

Γ(𝑝 + 𝑞)
e𝜆𝑢) × ( Γ(𝑝 + 𝑞)

Γ(𝑞)Γ(𝑝)
𝑣𝑝−1(1 − 𝑣)𝑞−1) .

The factorization of the joint density proves that the 𝑈 and 𝑉 are independent. We recognize
that the density of (the distribution of) 𝑈 is the Gamma density with shape parameter
𝑝 + 𝑞, intensity parameter 𝜆. The density of the distribution of 𝑉 is the Beta density with
parameters 𝑝 and 𝑞.

Exercise 9.14. Assume 𝑋1, 𝑋2, … , 𝑋𝑛 form an independent family with each 𝑋𝑖
distributed according to Γ(𝑝𝑖, 𝜆).
Determine the joint distribution of

𝑛
∑
𝑖=1

𝑋𝑖,
𝑋1

∑𝑛
𝑖=1 𝑋𝑖

, 𝑋2
∑𝑛

𝑖=1 𝑋𝑖
, … , 𝑋𝑛−1

∑𝑛
𝑖=1 𝑋𝑖
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9.8 Bibliographic remarks

Dudley (2002) and Pollard (2002) provide a full development of absolute continuity and
self-contained proofs the Radon-Nikodym’s Theorem.
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Chapter 10

Discrete Conditioning

10.1 Roadmap

Conditioning is central to probabilistic reasoning. In this lesson, we investigate discrete
conditioning. In this setting, the definition of conditional probability is not an issue. The
definition of conditional expectation can be deceptively simple. Nevertheless the discrete
setting lends itself to intuitive definitions and manipulations.

The simplest notion we meet is conditional probability with respect to a specific event
with positive probability (Section 10.2). Conditional probability offers an intuitive inter-
pretation of independence.

In Section 10.3 we state, check and discuss Bayes formula.
In Section 10.4, we define conditional expectation with respect to an atomic 𝜎-algebra.

This defines conditional expectation with respect to a discrete random variables.
In Section 10.5, we characterize conditional expectation as an optimal predictor. This

characterization is very helpful when defining conditional expectation in the general setting.

10.2 Conditioning with respect to an event

Definition 10.1. Let 𝑃 be a probability distribution on (Ω, ℱ). Let 𝐴 ∈ ℱ be such
that 𝑃{𝐴} > 0. Let 𝐵 be another event ( 𝐵 ∈ ℱ ), the probability of 𝐵 given 𝐴 is
defined as

𝑃{𝐵 ∣ 𝐴} = 𝑃{𝐴 ∩ 𝐵}
𝑃{𝐴}

.

If 𝑋 is a standard Gaussian random variable on (Ω, ℱ), and event 𝐴 is defined by
{𝜔 ∶ 𝑋(𝜔) ≥ 𝑡} for some 𝑡 ≥ 0, we may condition on event 𝐴 and define 𝑃{𝐵 ∣ 𝐴} for
𝐵 = {𝜔 ∶ |𝑋(𝜔)| ≥ 2𝑡}.

We get
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CHAPTER 10. DISCRETE CONDITIONING

𝑃{𝐵 ∣ 𝐴} = 𝑃{𝑋 ≥ 2𝑡}
𝑃{𝑋 ≥ 𝑡}

.

We may check the next proposition by considering once again the definition of proba-
bility distributions.

Proposition 10.1. Let 𝑃 be a probability distribution on (Ω, ℱ).
Let 𝐴 ∈ ℱ) be such that 𝑃{𝐴} > 0, then 𝑃{⋅ ∣ 𝐴} (𝑃 given 𝐴) defines a probability

distribution over (Ω, ℱ).

Proof. 𝑃(⋅ ∣ 𝐴) maps ℱ to [0, 1].
We have 𝑃(Ω ∣ 𝐴) = 𝑃(𝐴 ∩ Ω)/𝑃(𝐴) = 𝑃(𝐴)/𝑃(𝐴) = 1
Let (𝐵𝑛)𝑛 be a monotone increasing sequence of events, then

𝑃(∪𝑛𝐵𝑛 ∣ 𝐴) = 𝑃((∪𝑛𝐵𝑛)∩𝐴)
𝑃(𝐴)

= 𝑃(∪𝑛(𝐵𝑛∩𝐴))
𝑃(𝐴)

= lim𝑛 𝑃(𝐵𝑛∩𝐴)
𝑃(𝐴)

= lim𝑛 𝑃(𝐵𝑛 ∣ 𝐴) .

We may consider the distribution of random variables on (Ω, ℱ) under 𝑃{⋅ ∣ 𝐴}. We
compute the expectation of 𝑋 under 𝑃{⋅ ∣ 𝐴}:

𝔼𝑃{⋅∣𝐴}𝑋 = 𝔼[𝕀𝐴 𝑋]
𝑃{𝐴}

.

This is often denoted by 𝔼[𝑋 ∣ 𝐴], wewill try to avoid this possiblymisleading notation.

Example 10.1. Assume 𝑋 is standard normally distributed. One may investigate the distri-
bution of 𝑋2 conditionnally on event 𝐴 = {𝜔 ∶ 𝑋(𝜔) ≥ 𝑡}. For 𝑡 > 1, we have

𝔼𝑃{⋅∣𝑋≥𝑡}𝑋2 = ∫∞
𝑡

𝑥2𝜙(𝑥)d𝑥
∫∞
𝑡

𝜙(𝑥)d𝑥

≤ 𝑡2

1−1/𝑡 + 1 .

where the upper bound is obtained by repeated integration by parts.
The distribution of 𝑋 given 𝐴 is not Gaussian. Under 𝐴, 𝑋 is very concentrated in the

neighborhood of 𝑡, and tends to be more concentrated as 𝑡 goes to infinity.

Knowing the probability distribution given event𝐴 enables to investigate independence
of events with respect to 𝐴 The next trivial proposition is worth reminding.

Proposition 10.2. If 𝐴 and 𝐵 ∈ ℱ satisfy 𝑃{𝐴} > 0, then 𝐴 and 𝐵 are independent

under 𝑃 iff

𝑃{𝐵 ∣ 𝐴} = 𝑃{𝐵}.
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10.3. BAYES FORMULA

10.3 Bayes formula

Bayes formula is sometimes used in probabilistic causation theory. This is a difficult matter.
Causality is a subtle notion and we will refrain from making causal interpretations.

Proposition 10.3 (Bayes formula). Let 𝑃 be a probability distribution on (Ω, ℱ), let
(𝐴𝑖)𝑖∈ℐ⊆ℕ be a collection of pairwise disjoint events, with non-zero probability such

that ∪𝑖∈ℐ𝐴𝑖 = Ω ((𝐴𝑖)𝑖 form a complete system of events), let 𝐵 be an event with

non-zero probability, then for all 𝑖 ∈ ℐ,

𝑃{𝐴𝑖 ∣ 𝐵} = 𝑃{𝐴𝑖} × 𝑃{𝐵 ∣ 𝐴𝑖}
∑𝑗∈ℐ 𝑃{𝐴𝑗} × 𝑃{𝐵 ∣ 𝐴𝑗}

Proof. By definition, 𝑃{𝐴𝑖 ∣ 𝐵} = 𝑃{𝐴𝑖 ∩ 𝐵}/𝑃{𝐵} = 𝑃{𝐴𝑖} × 𝑃{𝐵 ∣ 𝐴𝑖}/𝑃{𝐵}.
Morever

𝑃{𝐵} = 𝑃{𝐵 ∩ (∪𝑗∈ℐ𝐴𝑗)}
= 𝑃{∪𝑗∈ℐ(𝐵 ∩ 𝐴𝑗)}
= ∑𝑗∈ℐ 𝑃{𝐵 ∩ 𝐴𝑗}
= ∑𝑗∈ℐ 𝑃{𝐴𝑗} × 𝑃{𝐵 ∣ 𝐴𝑗}.

In the preceding proposition,𝑃{𝐴𝑖} is called the prior probability of𝐴𝑖 and𝑃{𝐴𝑖 ∣ 𝐵}
the posterior probability.

10.4 Conditional expectation with respect to a discrete 𝜎-algebra

While the general notion of conditional expectation requires some abstraction, we can
introduce conditioning with respect to a discrete 𝜎-algebra starting from the elementary
notion of conditional probability with respect to an event with positive probability.

Definition 10.2. Let Ω be a universe, ℱ a 𝜎-algebra of events on Ω, 𝑃 a probability
distribution on (Ω, ℱ), let (𝐴𝑖)𝑖∈ℐ⊆ℕ be pairwise disjoint events, with non-zero
probability such that ∪𝑖𝐴𝑖 = Ω. Let 𝒢 be the atomic 𝜎-algebra generated by (𝐴𝑖)𝑖∈ℐ.
Let 𝑋 be a random variable from (Ω, ℱ) to (𝒳, ℋ), the conditional expectation of

𝑋 with respect to 𝒢 is the random variable defined as

𝔼[𝑋 ∣ 𝒢] = ∑
𝑖∈ℐ

𝔼𝑃{⋅|𝐴𝑖}
[𝑋] × 1𝐴𝑖

.

While 𝔼𝑃{⋅|𝐴𝑖}
[𝑋] is a real number, 𝔼[𝑋 ∣ 𝒢] is a 𝒢-measurable function from Ω to 𝒳:

𝔼[𝑋 ∣ 𝒢](𝜔) = ∑
𝑖∈ℐ

𝔼𝑃{⋅|𝐴𝑖}
[𝑋] × 1𝐴𝑖

(𝜔) ∀𝜔 ∈ Ω .
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These two kinds of objects should not be confused. Wewill refrain from using notation
𝔼[𝑋 ∣ 𝐴𝑖] since it may be confusing: 𝔼[𝑋 ∣ 𝐴𝑖] might denote either 𝔼𝑃{⋅|𝐴𝑖}

[𝑋] or 𝔼[𝑋 ∣
𝜎(𝐴𝑖)] where 𝜎(𝐴𝑖) is the sigma-algebra generated by 𝐴𝑖: {𝐴𝑖, 𝐴𝑐

𝑖 , Ω, ∅}.

Proposition 10.4. Let 𝑃 be a probability distribution on (Ω, ℱ). Let (𝐴𝑖)𝑖∈ℐ⊆ℕ be a

collection of pairwise disjoint events, with non-zero probability satisfying ∪𝑖∈ℐ𝐴𝑖 =
Ω. Let 𝒢 = 𝜎((𝐴𝑖)𝑖∈ℐ) denote the sigma-algebra generated by (𝐴𝑖)𝑖∈ℐ.The random

variable 𝑋 is assumed to be 𝑃- integrabe.

1. The conditional expectation 𝔼[𝑋 ∣ 𝒢] is a 𝒢-measurable random variable,

that satisfies

𝔼 [𝑌 𝑋] = 𝔼 [𝑌 𝔼[𝑋 ∣ 𝒢]] ∀𝑌 ∈ 𝜎(𝒢), 𝑌 bounded.

2. If two 𝒢-measurable random variables 𝑍, 𝑇 satisfy 𝔼 [𝑌 𝑋] = 𝔼 [𝑌 𝑍] =
𝔼[𝑌 𝑇 ], for all 𝑌 ∈ 𝜎(𝒢), 𝑌 bounded, then 𝑍 = 𝑇 almost surely.

Proof. We need to ckeck points 1.) and 2.):

1. 𝔼 [𝑋 ∣ 𝒢] satisfies first property in Proposition Proposition 10.4.
2. If 𝑍 satisfies Proposition 10.4, then 𝑍 = 𝔼 [𝑋 ∣ 𝒢] 𝑃-almost-surely.

Checking i.)
If 𝑌 is 𝒢-measurable, then 𝑌 = ∑𝑖∈ℐ 𝜆𝑖1𝐴𝑖

for some real-valued sequence (𝜆𝑖)𝑖∈ℐ .
Then

𝔼[𝑌 𝔼 [𝑋 ∣ 𝒢]] = 𝔼 [(∑𝑖∈ℐ 𝜆𝑖1𝐴𝑖
) (∑𝑗∈ℐ 1𝐴𝑗

𝔼[1𝐴𝑗𝑋]
𝑃{𝐴𝑗} )]

= 𝔼 [∑𝑖∈ℐ 𝜆𝑖1𝐴𝑖

𝔼[1𝐴𝑖𝑋]
𝑃{𝐴𝑖} )]

= ∑𝑖∈ℐ 𝜆𝑖𝔼[1𝐴𝑖
𝑋] 𝔼[1𝐴𝑖]

𝑃{𝐴𝑖} linearity of expectation
= ∑𝑖∈ℐ 𝜆𝑖𝔼[1𝐴𝑖

𝑋]
= 𝔼 [(∑𝑖∈ℐ 𝜆𝑖1𝐴𝑖

) 𝑋]
= 𝔼 [𝑌 𝑋] .

Checking ii.)
Assume 𝑍 satisfies Proposition 10.4.
Let us define 𝑌 using 𝑌 = 1𝐴𝑖

, for some index 𝑖 ∈ ℐ.
As 𝑍 is 𝒢-measurable, there exists a real-valued sequence (𝜇𝑗)𝑗∈ℐ

, such that 𝑍 =
∑𝑗∈ℐ 𝜇𝑗1𝐴𝑗

.
Thus, relying on the fact that events 𝐴𝑗 are pairwise disjoint:

𝔼 [𝑍𝑌] = 𝔼 [∑𝑗∈ℐ 𝜇𝑗1𝐴𝑗
1𝐴𝑖

] = 𝜇𝑖𝑃{𝐴𝑖}
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By the defining property of 𝑍, we have

𝔼[𝑍𝑌 ] = 𝔼[𝑋𝑌 ] = 𝔼[𝑋1𝐴𝑖
] .

Finally, for all 𝑖 ∈ ℐ, 𝜇𝑖 = 𝔼[𝑋1𝐴𝑖
]/𝑃{𝐴𝑖}.

We can now conclude 𝑍 = 𝔼[𝑋 ∣ 𝒢].

10.5 Conditional expectation as prediction

The next proposition reveals the role of conditional expectation in prediction/approxima-
tion problems.

Proposition 10.5. Let 𝑌 be a square-integrable random variable on (Ω, ℱ, 𝑃) and
𝒢 a discrete sub-𝜎-algebra of ℱ. The conditional expectation of 𝑌 with respect to 𝒢
minimizes

𝔼 [(𝑌 − 𝑍)2]

amongst 𝒢-measurable square-integrable random variables.

Recall that a 𝒢-measurable random variable is a function that remains constant on each
𝐴𝑖, 𝑖 ∈ ℐ.

Proof. If 𝑌 is a random variable on (Ω, ℱ), and if we are trying to predict at best 𝑌 from a
𝒢-measurable random variable , we are looking for a sequence of coefficients (𝑏𝑖)𝑖∈ℐ that
minimizes:

𝔼𝑃 [(𝑌 − ∑𝑖∈ℐ 𝑏𝑖I𝐴𝑖
)

2
] = 𝔼𝑃 [( ∑𝑖∈ℐ(𝑌 − 𝑏𝑖)I𝐴𝑖

)
2
]

= ∑𝑖∈ℐ 𝔼𝑃 [(𝑌 − 𝑏𝑖)
2 I𝐴𝑖

]
= ∑𝑖∈ℐ 𝑃{𝐴𝑖} 𝔼𝑃{⋅∣𝐴𝑖} [(𝑌 − 𝑏𝑖)

2]

Thus for each 𝑖, 𝑏𝑖 must coincide with the expectation of 𝑌 under 𝑃{⋅ ∣ 𝐴𝑖}. The best
prediction of 𝑌, in the sense of the quadratic error, among the 𝒢-measurable functions is
the conditional expectation of 𝑌 with respect to 𝒢.

The properties identified by propositions Proposition 10.4 and @ref(prp:espercond-
pred) serve as a definition for the conditional expectation with respect to a general 𝜎-algebra.

10.6 Properties of conditional expectation

We state without proof a number of useful properties of conditional expectation with
respect to discrete 𝜎-algebras. We shall prove them in full generality later.
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Proposition 10.6. If 𝑋 ≤ 𝑌, 𝑃-a.s., then

𝔼[𝑋 ∣ 𝒢] ≤ 𝔼[𝑌 ∣ 𝒢] 𝑃-p.s.

Proposition 10.7.

𝔼[𝑎𝑋 + 𝑏𝑌 ∣ 𝒢] = 𝑎𝔼[𝑋 ∣ 𝒢] + 𝑏𝔼[𝑌 ∣ 𝒢] .

Proposition 10.8. If ℋ ⊆ 𝒢 ⊆ ℱ

𝔼 [𝔼 [𝑋 ∣ 𝒢] ∣ ℋ] = 𝔼 [𝑋 ∣ ℋ] .

𝔼 [𝔼 [𝑋 ∣ ℋ] ∣ 𝒢] = 𝔼 [𝑋 ∣ ℋ] .

Prove the proposition.

𝔼𝑋 = 𝔼[𝔼[𝑋 ∣ 𝒢]] .

10.7 Application: Galton-Watson processes I

The size of generation 𝑘 ≥ 0 is defined recursively by

𝑍0 = 1, 𝑍𝑘+1 =
𝑍𝑘

∑
𝑖=1

𝑋𝑘
𝑖 .

The 𝜎-algebra 𝜎(𝑍𝑘) is discrete/atomic, it is generated by the pairwise disjoint events
{𝑍𝑘 = 𝑎} for 𝑎 ∈ ℕ.

Proposition 10.9. In a Galton-Watson (homogeneous) branching process with repro-

duction number 𝜇, the conditional expectation of the size of the size of the 𝑘 + 1th
generation with respect to the size of the 𝑘th generation is a linear function of the size

of the 𝑘th generation:

𝔼[𝑍𝑘+1 ∣ 𝜎(𝑍𝑘)] = 𝔼𝑋0
1 × 𝑍𝑘 = 𝜇 × 𝑍𝑘

Proof. On the event {𝑍𝑘 = 𝑎}, we can determine the conditional distribution of 𝑍𝑘+1.

{𝑍𝑘+1 = 𝑏 ∧ 𝑍𝑘 = 𝑎} = { ∑𝑎
𝑖=1 𝑋𝑘

𝑖 = 𝑏 ∧ 𝑍𝑘 = 𝑎}

= { ∑𝑎
𝑖=1 𝑋𝑘

𝑖 = 𝑏} ∩ {𝑍𝑘 = 𝑎}
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we have

𝑃{𝑍𝑘+1 = 𝑏 ∣ 𝑍𝑘 = 𝑎} = 𝑃{ ∑𝑎
𝑖=1 𝑋𝑘

𝑖 = 𝑏 ∣ 𝑍𝑘 = 𝑎} = 𝑃{ ∑𝑎
𝑖=1 𝑋𝑘

𝑖 = 𝑏}

On the event {𝑍𝑘 = 𝑎}, 𝑍𝑘+1 is distributed like the sum of 𝑎 independent copies of
𝑋0

1 :

𝔼[𝑍𝑘+1 ∣ 𝜎(𝑍𝑘)] = ∑∞
𝑎=0 𝔼𝑃(∣𝑍𝑘=𝑎)[𝑍𝑘+1] × 𝕀𝑍𝑘=𝑎

= ∑∞
𝑎=0 𝔼𝑃(∣𝑍𝑘=𝑎)[ ∑𝑎

𝑖=1 𝑋𝑘
𝑖 ] × 𝕀𝑍𝑘=𝑎

= ∑∞
𝑎=0 𝔼[ ∑𝑎

𝑖=1 𝑋𝑘
𝑖 ] × 𝕀𝑍𝑘=𝑎

= ∑∞
𝑎=0 ∑𝑎

𝑖=1 𝔼[𝑋𝑘
𝑖 ] × 𝕀𝑍𝑘=𝑎

= ∑∞
𝑎=0 𝑎𝔼𝑋0

1 × 𝕀𝑍𝑘=𝑎
= 𝔼𝑋0

1 × 𝑍𝑘 .

An immediate corollary is:

𝔼𝑍𝑘 = (𝔼𝑋0
1)𝑘 forall 𝑘 ≥ 0 .

The sequence of expected sizes of generations forms a geometric sequence.
A Galton-Watson process is said to be sub-critical if the expectation of the offspring

distribution is smaller than 1.

Proposition 10.10 (Extinction under sub-critical offspring distribution). The extinc-

tion probability of a sub-critical branching process is equal to 1.

Proof. Denote by 𝐸𝑘 the event {𝑍𝑘 = 0}. Observe that the sequence (𝐸𝑘)𝑘 is increasing.
Denote by 𝐸∞ = ∪∞

𝑘=0𝐸𝑘.

𝑃{𝐸𝑐
𝑘} = 𝑃{𝑍𝑘 ≥ 1} ≤ 𝔼𝑍𝑘 .

Hence 𝑃{𝐸𝑐
𝑘} ↓ 0 and 𝑃{𝐸𝑘} ↑ 1. By monotone convergence 𝑃(𝐸∞) = 1.

The expected size of the total progeny of subcritical branching process is equal to

∞
∑
𝑘=0

𝔼𝑍𝑘 =
∞

∑
𝑘=0

(𝔼𝑋0
1)𝑘 = 1

1 − 𝔼𝑋0
1

.

Working with discrete conditioning allows us to derive non-trivial statements about the
Galton-Watson process without knowingmuch about the offspring distribution beyond the
fact that its expectation is smaller than 1. We still ignore the the details of the distribution
of 𝑍𝑘, let alone of the distribution of ∑∞

𝑘=0 𝑍𝑘.
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Chapter 11

Conditioning

11.1 Defining conditional expectation

In this and the following sections, (Ω, ℱ, 𝑃) is a probability space, and 𝒢 ⊆ ℱ a sub-𝜎-
algebra. The sub-𝜎-algebra need not be atomic as in Chapter 10. We cannot define con-
ditional probabilities by conditioning with respect to atoms generating 𝒢. Our objective
is nervertheless to define conditional expectations with respect to sub-𝜎-algebra 𝒢, while
retaining the nice properties surveyed in Chapter 10.

The general definition of conditional expectation starts from the property described in
Proposition 10.4.

Definition 11.1 (Conditional expectation). Let 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃) and 𝒢 be a sub-𝜎-
algebra of ℱ, then a random variable 𝑌 is a version of the conditional expectation of
𝑋 with respect to 𝒢 iff

i. 𝑌 is 𝒢-measurable.
ii. For every event 𝐵 in 𝒢:

𝔼 [𝕀𝐵𝑋] = 𝔼 [𝕀𝐵𝑌] .

Leaving aside the question of the existence of a version of conditional expectation of 𝑋,
we first check that if there exist different versions, they differ only up to a negligible event.

Let 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃) and 𝒢 a sub-𝜎-algebra of ℱ, then if 𝑌 ′ and 𝑌 are two versions of
the conditional expectation of 𝑋 with respect to 𝒢:

𝑃 {𝑌 = 𝑌 ′} = 1.

Proof. As 𝑌 and 𝑌 ′ are 𝒢-measurable, the event

𝐵 = {𝜔 ∶ 𝑌 (𝜔) > 𝑌 ′(𝜔)}
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belongs to 𝒢. Moreover,

𝔼 [𝕀𝐵 𝑋] = 𝔼 [𝕀𝐵 𝑌]
= 𝔼 [𝕀𝐵 𝑌 ′] .

Thus
𝔼 [𝕀𝐵(𝑌 − 𝑌 ′)] = 0 .

As random variable 𝕀𝐵(𝑌 − 𝑌 ′) is non-negative, its expectation is zero, it is null with
probability 1. Thus

𝑃{𝑌 > 𝑌 ′} = 0 .

We can conclude by proceeding in a similar way for event {𝑌 < 𝑌 ′}.

Still postponing the existence question, let us check now a few properties versions of
conditional expectation of 𝑋 should satisfy.

Let 𝑋1, 𝑋2 ∈ ℒ1(Ω, ℱ, 𝑃), 𝒢 a sub-𝜎-algebra of ℱ, 𝑎1, 𝑎2 two real numbers, then if
𝑌1 𝑌2 and 𝑍 are respectively versions versions of conditional expectation of 𝑋1, 𝑋2 and
𝑎1𝑋1 + 𝑎2𝑋2 with respect to 𝒢, we have

𝑃{𝑎1𝑌1 + 𝑎2𝑌2 = 𝑍} = 1 .

Proof. Let 𝐵 be the event of 𝒢 defined by

{𝑎1𝑌1 + 𝑎2𝑌2 > 𝑍} .

We get

𝔼[𝕀𝐵𝑍] = 𝔼[𝕀𝐵(𝑎1𝑋1 + 𝑎2𝑋2)]
= 𝑎1𝔼[𝕀𝐵𝑋1] + 𝑎2𝔼[𝕀𝐵𝑋2]
= 𝑎1𝔼[𝕀𝐵𝑌1] + 𝑎2𝔼[𝕀𝐵𝑌2]
= 𝔼[𝕀𝐵(𝑎1𝑌1 + 𝑎2𝑌2)] ,

and thus
𝔼[𝕀𝐵(𝑍 − (𝑎1𝑌1 + 𝑎2𝑌2))] = 0 .

We conclude as in the proceeding proof that 𝑃{𝐵} = 0.
The proof is completed by handling in a similar way the event {𝑎1𝑌1 +𝑎2𝑌2 < 𝑍} .

Proposition 11.1. If 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃), 𝒢 a sub-𝜎 algebra of ℱ. If 𝑍 is a version the

conditional expectation of 𝑋 with respect to 𝒢 and if 𝑋 is 𝑃-a.s. non-negative, then

𝑃{𝑍 ≥ 0} = 1 .

The proof reproduces the argument used to established that different versions of the
conditional expectation are almost surely equal.
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Proof. For 𝑛 ∈ ℕ, let 𝐵𝑛 denote the event (from 𝒢) defined by

𝐵𝑛 = {𝔼 [𝑋 ∣ 𝒢] < − 1
𝑛

} .

To prove the proposition, it is enough to check

𝑃 {∪𝑛𝐵𝑛} = 0.

As 𝑃 {∪𝑛𝐵𝑛} = lim𝑛 𝑃{𝐵𝑛}, it suffices to check 𝑃 {𝐵𝑛} = 0, for all 𝑛, 𝑃 {𝐵𝑛} = 0. For
all 𝑛,

0 ≤ 𝔼[𝕀𝐵𝑛
𝑋]

= 𝔼 [𝕀𝐵𝑛
𝑋]

= 𝔼 [𝕀𝐵𝑛
𝔼 [𝑋 ∣ 𝒢]]

≤ −𝑃{𝐵𝑛}
𝑛

.

Hence, for all 𝑛, 𝑃{𝐵𝑛} = 0.

The next corollary is a consequence of Proposition 11.1.

Corollary 11.1. If (𝑋𝑛)𝑛∈ℕ is a sequence of random variables from ℒ1(Ω, ℱ, 𝑃)
satisfying 𝑋𝑛+1 ≥ 𝑋𝑛 𝑃-a.s. then there exists an 𝑃-a.s. non-decreasing sequence of
versions of conditional expectations

∀𝑛 ∈ ℕ, 𝔼 [𝑋𝑛+1 ∣ ℱ] ≥ 𝔼 [𝑋𝑛 ∣ ℱ] .

Let ℰ be a 𝜋-system generating 𝒢 and containing Ω. Check that 𝔼 [𝑋 ∣ 𝒢] is the unique
element from ℒ1 (Ω, 𝒢, 𝑃) which satisfies

∀𝐵 ∈ ℰ, 𝔼 [𝕀𝐵𝑋] = 𝔼 [𝕀𝐵𝔼 [𝑋 ∣ 𝒢]] .

For nested sub-𝜎-algebras, conditional expectations satisfy the tower property:
Let (Ω, ℱ, 𝑃) be a probability space, and 𝒢 ⊆ ℋ ⊆ ℱ be two nested sub-𝜎-algebras.

Then for every 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃):

𝔼[𝔼 [𝑋 ∣ 𝒢] ∣ ℋ] = 𝔼[𝔼 [𝑋 ∣ ℋ] ∣ 𝒢] = 𝔼 [𝑋 ∣ 𝒢] a.s.

Proof. Almost sure equality 𝔼[𝔼 [𝑋 ∣ 𝒢] ∣ ℋ] = 𝔼 [𝑋 ∣ 𝒢] is trivial: any 𝒢-measurable
random variable is also ℋ-measurable.

Let us now check the second equality.
For every 𝐵 ∈ 𝒢,

𝔼 [𝕀𝐵𝔼 [𝔼 [𝑋 ∣ ℋ] ∣ 𝒢]] = 𝔼 [𝕀𝐵𝔼 [𝑋 ∣ ℋ]]
comme 𝐵 ∈ ℋ

= 𝔼 [𝕀𝐵𝑋] .
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11.2 Conditional expectation in ℒ2(Ω, ℱ, 𝑃)

If we focus on square-integrable random variables, building versions of conditional expec-
tation turn out to be easy. Recall that when the conditioning sub-𝜎-algebra 𝒢 is atomic,
according to Proposition 10.5, the condition expectation 𝔼[𝑋 ∣ 𝒢] defines an optimal
predictor of 𝑋 with respect to quadratic error amongst 𝒢-measurable random variables.
This characterization remains valid for square integrable random variables even when the
conditioning sub-𝜎-algebra is no more atomic. This is the content of the next theorem.

Theorem 11.1 (Conditional expectation for square integrable random variables). Let

be 𝑋 ∈ ℒ2(Ω, ℱ, 𝑃) and 𝒢 a sub-𝜎-algebra of ℱ.

There exists 𝑌 ∈ ℒ2(Ω, 𝒢, 𝑃 ) that minimizes the 𝐿2 distance to 𝑋:

∃𝑌 ∈ ℒ2(Ω, 𝒢, 𝑃 ) 𝔼(𝑌 − 𝑋)2 = inf{𝔼(𝑍 − 𝑋)2 ∶ 𝑍 ∈ ℒ2(Ω, 𝒢, 𝑃 )} ,

that is, 𝑌 represents a version of the orthogonal projection of 𝑋 on ℒ2(Ω, 𝒢, 𝑃 ).
A version 𝑌 of the orthogonal projection of 𝑋 on ℒ2(Ω, 𝒢, 𝑃 ) is also a version of the

conditional expectation of 𝑋 with respect to 𝒢:

∀𝐵 ∈ 𝒢, 𝔼 [𝕀𝐵𝑋] = 𝔼 [𝕀𝐵 𝑌] .

Note that theorem contains two statements: first, there exists aminimizer of 𝔼(𝑋 −𝑍)2

in ℒ2(𝜔, ℱ, 𝑃), second, such a minimizer is a version of condition expectation defined
according to Definition 11.1. Checking the first statement amounts to invoke the right
arguments from Hilbert spaces theory.

For the sake of self-reference, we recall basics if Hilbert spaces theory.

Definition 11.2 (Hilbert’s space). A real vector space 𝐸 equipped with a norm ‖ ⋅ ‖ is
a Hilbert space iff ⟨⋅, ⋅⟩ defined by

∀𝑥, 𝑦 ∈ 𝐸, ⟨𝑥, 𝑦⟩ = 1
4

(‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2)

is an inner product and 𝐸 is complete for the topology induced by the norm.

Let (Ω, ℱ, 𝑃) be a probability space, then the set 𝐿2(Ω, ℱ, 𝑃) of equivalence classes
of square integrable variables, equipped with ‖𝑋‖2 = (𝔼𝑋2)1/2 is a Hilbert space.

Remark 11.1. In this context,

⟨𝑋, 𝑌 ⟩ = 𝔼 [𝑋𝑌] .

From Hilbert space theory, the essential tool we shall use is the projection Theorem
below. Our starting point is the next observation (that follows from results in Chapter 3).
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Let (Ω, ℱ, 𝑃) be a probability space, let 𝒢 ⊆ ℱ be a sub-𝜎-algebra, then 𝐿2(Ω, 𝒢, 𝑃 )
is a closed convex subset (subspace) of 𝐿2(Ω, ℱ, 𝑃).

We look for the element from 𝐿2(Ω, 𝒢, 𝑃 ) that is closest (in the 𝐿2 sense) to a random
variable from 𝐿2(Ω, ℱ, 𝑃). The existence and unicity of this closest 𝒢-measurable random
variable are warranted by the Projection Theorem.

Theorem 11.2 (Projection Theorem). Let 𝐸 be a Hilbert space and 𝐹 a closed convex

subset of 𝐹. For every 𝑥 ∈ 𝐸, there exists a unique 𝑦 ∈ 𝐹, such that

‖𝑥 − 𝑦‖ = inf
𝑧∈𝐹

‖𝑥 − 𝑧‖.

This unique closest point in 𝐹 is called the (orthogonal) projection of 𝑥 over 𝐹. For
any 𝑧 ∈ 𝐹,

⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ ≤ 0 .

If 𝐹 is a linear subspace of 𝐸, the Pythagorean relationship holds:

‖𝑥‖2 = ‖𝑦‖2 + ‖𝑥 − 𝑦‖2

and for any 𝑧 ∈ 𝐹, ⟨𝑥 − 𝑦, 𝑧⟩ = 0.

Proof. Let 𝑑 = inf𝑧∈𝐹 ‖𝑥 − 𝑧‖. Let (𝑧𝑛)𝑛 be a sequence of elements from 𝐹 such that

lim
𝑛

‖𝑥 − 𝑧𝑛‖ = 𝑑.

According to the parallelogram law,

2 (‖𝑥 − 𝑧𝑛‖2 + ‖𝑥 − 𝑧𝑚‖2) = ‖2𝑥 − (𝑧𝑛 + 𝑧𝑚)‖2 + ‖𝑧𝑛 − 𝑧𝑚‖2.

Since 𝐹 is convex, (𝑧𝑛 + 𝑧𝑚)/2 ∈ 𝐹, so

‖𝑥 − (𝑧𝑛 + 𝑧𝑚)/2‖ ≥ 𝑑 .

Let 𝜖 ∈ (0, 1] and 𝑛0 be such that for 𝑛 ≥ 𝑛0, ‖𝑥 − 𝑧𝑛‖ ≤ 𝑑 + 𝜖. For 𝑛, 𝑚 ≥ 𝑛0

4(𝑑 + 𝜖)2 ≥ 4𝑑2 + ‖𝑧𝑛 − 𝑧𝑚‖2

or equivalently
‖𝑧𝑛 − 𝑧𝑚‖2 ≤ 4(2𝑑 + 1)𝜖 .

Hence, the minimizing sequence (𝑧𝑛)𝑛 has the Cauchy property. As 𝐹 is closed, it has a
unique limit 𝑦 ∈ 𝐹 and 𝑑 = ‖𝑥 − 𝑦‖.

To verify uniqueness, suppose there exists 𝑦′ ∈ 𝐹, such as ‖𝑥 − 𝑦′‖ = 𝑑. Now, let us
build a new sequence (𝑧′

𝑛)𝑛∈ℕ such that 𝑧′
2𝑛 = 𝑧𝑛 and 𝑧′

2𝑛+1 = 𝑦′. This 𝐹-valued sequence
satisfies lim𝑛 ‖𝑧′

𝑛 − 𝑥‖ = 𝑑. By the argument above, it admits a limit 𝑦′′ in 𝐹. The limit 𝑦′′

coincides with the limit of any sub-sequence, so it equals 𝑦 and 𝑦′.
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Fix 𝑧 ∈ 𝐹 ∖ {𝑦}, for any 𝑢 ∈ (0, 1], let 𝑧𝑢 = 𝑦 + 𝑢(𝑧 − 𝑦), then 𝑧𝑢 ∈ 𝐹 and

‖𝑥 − 𝑧𝑢‖2 − ‖𝑥 − 𝑦‖2 = −2𝑢⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ + 𝑢2‖𝑧 − 𝑦‖2 .

As this quantity is non-negative for 𝑢 ∈ [0, 1], ⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ has to be non-positive.
Now suppose that 𝐹 is a subspace of 𝐸.
If there is 𝑦 ∈ 𝐹 such as ⟨𝑥−𝑦, 𝑧⟩ = 0 for any 𝑧 ∈ 𝐹, then 𝑦 is the orthogonal projection

of 𝑥 on 𝐹 since for all 𝑧 ∈ 𝐹:

‖𝑥 − 𝑧‖2 = ‖𝑥 − 𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑧⟩ + ‖𝑧‖2

≥ ‖𝑥 − 𝑦‖|2.

Conversely, if 𝑦 is the orthogonal projection of 𝑥 on 𝐹, for all 𝑧 of 𝐹 and all 𝜆 ∈∈ ℝ:

‖𝑥 − 𝑦‖|2 ≤ ‖𝑥 − (𝑦 + 𝜆𝑧)‖2

= ‖𝑥 − 𝑦‖2 − 2𝜆⟨𝑥 − 𝑦, 𝑧⟩ + 𝜆2‖𝑧‖2,

so 0 ≤ 2𝜆⟨𝑥 − 𝑦, 𝑧⟩ + 𝜆2‖𝑧‖2. For this polynomial in 𝜆 to be of constant sign, it is necessary
that ⟨𝑥 − 𝑦, 𝑧⟩ = 0.

As ℒ2(Ω, 𝒢, 𝑃 ) is a convex part of ℒ2(Ω, ℱ, 𝑃), the existence and uniqueness of the
projection on a closed convex part of a Hilbert space gives the following corollary which
matches the first statement in Theorem 11.1).

Given 𝑋 ∈ ℒ2(Ω, ℱ, 𝑃) and 𝒢 a sub-𝜎-algebra of ℱ, there exists 𝑌 ∈ ℒ2(Ω, 𝒢, 𝑃 )
that minimizes

𝔼 [(𝑋 − 𝑍)2] for 𝑍 ∈ ℒ2(Ω, 𝒢, 𝑃 ).

Any other minimizer in ℒ2(Ω, 𝒢, 𝑃 ) is 𝑃-almost surely equal to~𝑌 .

Proof. Let 𝑌 be a version of the orthogonal projection of 𝑋 on 𝐿2(Ω, 𝒢, 𝑃 ) and 𝐵 an
element of 𝒢.

The inner product of 𝕀𝐵 ∈ ℒ2(Ω, 𝒢, 𝑃 )) and 𝑋 − 𝑌 is

⟨𝑋 − 𝑌 , 𝕀𝐵⟩ = 𝔼 [(𝑋 − 𝑌 )𝕀𝐵] .

By Theorem 11.2, 𝔼 [(𝑋 − 𝑌 )𝕀𝐵] = 0.

We conclude this section with a Pythagorean theorem for the variance.

Definition 11.3 (Conditional variance). Let 𝑋 ∈ ℒ2(Ω, ℱ, 𝑃) and 𝒢 ⊆ ℱ a sub-𝜎-
algebra. The conditional variance of 𝑋 with respect to 𝒢 is defined by

Var [𝑋 ∣ 𝒢] = 𝔼 [(𝑋 − 𝔼[𝑋 ∣ 𝒢])2 ∣ 𝒢] .

The conditional variance is a (𝒢-measurable) random variable, just as the conditional
expectation. It is the conditional expectation of the prediction error that is incurred when
trying to predict 𝑋 using 𝔼[𝑋 ∣ 𝒢].
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Proposition 11.2. Let 𝑋 ∈ ℒ2(Ω, ℱ, 𝑃) and 𝒢 ⊆ ℱ a sub-𝜎-algebra. Then

Var[𝑋] = Var [𝔼 [𝑋 ∣ 𝒢] ] + 𝔼[Var [𝑋 ∣ 𝒢] ] .

Proof. Recall that 𝔼 [𝔼 [𝑋 ∣ 𝒢]] = 𝔼 [𝑋].

Var [𝑋] = 𝔼 [(𝑋 − 𝔼 [𝑋])2]

= 𝔼 [(𝑋 − 𝔼 [𝑋 ∣ 𝒢] + 𝔼 [𝑋 ∣ 𝒢] − 𝔼 [𝑋])2]

= 𝔼 [(𝑋 − 𝔼 [𝑋 ∣ 𝒢])2]

+ 2𝔼 [(𝑋 − 𝔼 [𝑋 ∣ 𝒢]) (𝔼 [𝑋 ∣ 𝒢] − 𝔼 [𝑋])]

+ 𝔼 [(𝔼 [𝑋 ∣ 𝒢] − 𝔼 [𝑋])2]

= 𝔼 [𝔼 [(𝑋 − 𝔼 [𝑋 ∣ 𝒢])2 ∣ 𝒢]]

+ 2𝔼[𝔼 [(𝑋 − 𝔼 [𝑋 ∣ 𝒢]) ∣ 𝒢] (𝔼 [𝑋 ∣ 𝒢] − 𝔼 [𝑋]) ]

+ Var [𝔼 [𝑋 ∣ 𝒢]]
= 𝔼 [Var [𝑋 ∣ 𝒢]] + Var [𝔼 [𝑋 ∣ 𝒢]] .

11.3 Conditional expectation in ℒ1(Ω, ℱ, 𝑃)

To construct the conditional expectation of a random variable, square-integrability is not
necessary. This is the meaning of the next theorem.

Theorem 11.3. If 𝑌 ∈ ℒ1(Ω, ℱ, 𝑃), then there exists an integrable 𝒢-measurable

random variable, denoted by 𝔼 [𝑌 ∣ 𝒢] such that

∀𝐵 ∈ 𝒢, 𝔼 [𝕀𝐵𝑌] = 𝔼 [𝕀𝐵𝔼 [𝑌 ∣ 𝒢]] .

In words, conditional expectations according to Definition 11.1 exist for all integrable
random variables and all sub-𝜎-algebras.

Exercise 11.1. Let 𝒢′ be a 𝜋-system that contains Ω and generates 𝒢. If 𝑍 is an inte-
grable 𝒢-measurable variable that satisfies

∀𝐵 ∈ 𝒢′, 𝔼 [𝕀𝐵𝑌] = 𝔼 [𝕀𝐵𝔼 [𝑌 ∣ 𝒢]]

then 𝑍 = 𝔼 [𝑌 ∣ 𝒢] .

To establish the Theorem 11.3, we use the usual machinery of limiting arguments.
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Proposition 11.3. If (𝑌𝑛)𝑛 is a non-decreasing sequence of non-negative square-

integrable random variables such as 𝑌𝑛 ↑ 𝑌 a.s. then there exists a 𝒢-measurable

random variable 𝑍 such that

𝔼 [𝑌𝑛 ∣ 𝒢] ↑ 𝑍 a.s.

Proof. As (𝑌𝑛)𝑛 is non-decreasing, according to Proposition 11.1 (𝔼 [𝑌𝑛 ∣ 𝒢])𝑛 is an (a.s.)
non-decreasing sequence of 𝒢-measurable random variables, it admits a 𝒢-measurable limit
(finite or not).

We now proceed to the proof of Theorem 11.3.

Proof. Without losing in generality, we assume 𝑌 ≥ 0 (if this is not the case, let 𝑌 =
(𝑌 )+−(𝑌 )− with (𝑌 )+ = |𝑌 |𝕀𝑌 ≥0 and (𝑌 )− = |𝑌 |𝕀𝑌 <0, handle (𝑌 )+ and (𝑌 )− separately
and use the linearity of conditional expectation).

Let
𝑌𝑛 = 𝑌 𝕀|𝑌 |≤𝑛

so that𝑌𝑛 ↗ 𝑌 everywhere. The randomvariable𝑌𝑛 is bounded and thus square-integrable.
The random variable
𝔼 [𝑌𝑛 ∣ 𝒢] is therefore well defined for each 𝑛.

The sequence 𝔼 [𝑌𝑛 ∣ 𝒢] is 𝑃-a.s. monotonous. It converges monotonously towards a
𝒢-measurable random variable 𝑍 which takes values in ℝ+ ∪ {∞}. We need to check that
this random variable 𝑍 ∈ ℒ1(Ω, ℱ, 𝑃).

By monotonous convergence:

𝔼𝑌 = 𝔼[ lim
𝑛

↑ 𝑌𝑛]

= lim
𝑛

↑ 𝔼[𝑌𝑛]

= lim
𝑛

↑ 𝔼[𝔼 [𝑌𝑛 ∣ 𝒢] ]

= 𝔼[ lim
𝑛

↑ 𝔼 [𝑌𝑛 ∣ 𝒢] ]

= 𝔼𝑍 .

If 𝐴 ∈ 𝒢, by monotonous convergence,

lim
𝑛

↑ 𝔼 [𝕀𝐴𝑌𝑛] = 𝔼 [𝕀𝐴𝑌]

and so
lim

𝑛
↑ 𝔼 [𝕀𝐴𝔼 [𝑌𝑛 ∣ 𝒢]] = 𝔼 [𝕀𝐴𝑌] .

By monotonous convergence again:

lim
𝑛

↑ 𝔼 [𝕀𝐴 lim
𝑛

𝔼 [𝑌𝑛 ∣ 𝒢]] = 𝔼 [𝕀𝐴𝑍]
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11.4 Properties of (general) conditional expectation

Remark 11.2. In this Section (Ω, ℱ, 𝑃) is a probability space, 𝒢 is a sub-𝜎-algebra of ℱ.
Random variables (𝑋𝑛)𝑛, (𝑌𝑛)𝑛, 𝑋, 𝑌 , 𝑍 are meant to be integrables, and a.s. means 𝑃-a.s.

The easiest property is:
If 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃) then

𝔼 [𝑋] = 𝔼 [𝔼 [𝑋 ∣ 𝒢]] .

Exercise 11.2. Prove it.

If 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃) and 𝑋 is 𝒢-measurable then

𝑋 = 𝔼 [𝑋 ∣ 𝒢] 𝑃-a.s.

Exercise 11.3. Prove it.

Using the definition of conditional expectation and monotone approximation by
simple functions (see Section 3.2)), we obtain an alternative characterization of conditional
expectation.

Let 𝑋 ∈ ℒ1(Ω, ℱ, 𝑃) and 𝒢 ⊆ ℱ be a sub-𝜎-algebra, then for every 𝑌 ∈ ℒ1(Ω, 𝒢, 𝑃 ),
such that 𝔼 [|𝑋𝑌 |] < ∞

𝔼 [𝑋𝑌] = 𝔼 [𝑌 𝔼 [𝑋 ∣ 𝒢]] .

Exercise 11.4. Prove it.

We pocket the next proposition for future and frequent use. We could go ahead with
listing many other useful properties of conditional expectation. They are best discovered
and established when needed.

If 𝑋, 𝑌 ∈ ℒ1(Ω, ℱ, 𝑃) and 𝑌 is 𝒢-measurable then

𝔼 [𝑋𝑌 ∣ 𝒢] = 𝑌 𝔼 [𝑋 ∣ 𝒢] 𝑃-a.s.

Proof. As 𝑌 𝔼 [𝑋 ∣ 𝒢] is 𝒢-measurable, it suffices to check that for every 𝐵 ∈ 𝒢,

𝔼 [𝕀𝐵𝑋𝑌] = 𝔼 [𝕀𝐵 (𝑌 𝔼 [𝑋 ∣ 𝒢])] .

But

𝔼 [𝕀𝐵𝑋𝑌] = 𝔼 [(𝕀𝐵𝑌 )𝑋]
= 𝔼 [(𝕀𝐵𝑌 )𝔼 [𝑋 ∣ 𝒢]]
= 𝔼 [𝕀𝐵 (𝑌 𝔼 [𝑋 ∣ 𝒢])] .
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11.5 Conditional convergence theorems

Limit theorems from integration theory (monotone convergence theorem, Fatou’s Lemma,
Dominated convergence theorem) can be adapted to the conditional expectation setting.

Theorem 11.4 (Monotone convergence). Let the sequence (𝑋𝑛)𝑛 of non-negative

random variables converge monotonously to 𝑋 (𝑋𝑛 ↑ 𝑋 a.s.), with 𝑋 integrable,

then for every sequence of versions of conditional expectations:

lim
𝑛

↑ 𝔼 [𝑋𝑛 ∣ 𝒢] = 𝔼 [𝑋 ∣ 𝒢] a.s.

Proof. The sequence 𝑋 − 𝑋𝑛 is non-negative and decreases to 0 a.s. It suffices to show that
lim𝑛 ↓ 𝔼 [𝑋 − 𝑋𝑛 ∣ 𝒢] = 0 a.s. Note first that the sequence 𝔼 [𝑋 − 𝑋𝑛 ∣ 𝒢] converges a.s.
toward a non-negative limit. We need to check that this limit is a.s. zero.

For 𝐴 ∈ 𝒢 :

𝔼 [𝕀𝐴 lim
𝑛

𝔼 [𝑋 − 𝑋𝑛 ∣ 𝒢]] = lim
𝑛

𝔼 [𝕀𝐴𝔼 [𝑋 − 𝑋𝑛 ∣ 𝒢]]

monotone convergence theorem
= lim

𝑛
𝔼 [𝕀𝐴 (𝑋𝑛 − 𝑋)]

monotone convergence theorem
= 0 .

Theorem 11.5 (Conditional Fatou’s Lemma). Let (𝑋𝑛)𝑛 be a sequence of non-negative

random variables, then

𝔼 [lim inf
𝑛

𝑋𝑛 ∣ 𝒢] ≤ lim inf
𝑛

𝔼 [𝑋𝑛 ∣ 𝒢] a.s.

As for the proof of Fatou’s Lemma, the argument boils down tomonotone convergence
arguments.

Proof. Let 𝐵 ∈ 𝒢. Let 𝑋 = lim inf𝑛 𝑋𝑛, 𝑋 is a non-negative random variable. Let
𝑌 = lim inf𝑛 𝔼 [𝑋𝑛 ∣ 𝒢], 𝑌 is a 𝒢-measurable integrable random variable. The theorem
compares 𝔼 [𝑋 ∣ 𝒢] and 𝑌 .

Let 𝑍𝑘 = inf𝑛≥𝑘 𝑋𝑛. Thus lim𝑘 ↑ 𝑍𝑘 = lim inf𝑛 𝑋𝑛 = 𝑋. According to Theo-
rem 11.4,

𝔼 [𝑍𝑘 ∣ 𝒢] ↑𝑘 𝔼 [lim inf
𝑛

𝑋𝑛 ∣ 𝒢] a.s.

For every 𝑛 ≥ 𝑘, 𝑋𝑛 ≥ 𝑍𝑘 a.s. Hence by the comparison Theorem (Corollary 11.1)),

∀𝑛 ≥ 𝑘 𝔼 [𝑍𝑘 ∣ 𝒢] ≤ 𝔼 [𝑋𝑛 ∣ 𝒢] a.s.
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as a countable union of 𝑃-negligible events is 𝑃-negligible. Hence for every 𝑘,

𝔼 [𝑍𝑘 ∣ 𝒢] ≤ lim inf
𝑛

𝔼 [𝑋𝑛 ∣ 𝒢] a.s.

This entails
lim

𝑘
↑ 𝔼 [𝑍𝑘 ∣ 𝒢] ≤ lim inf

𝑛
𝔼 [𝑋𝑛 ∣ 𝒢] a.s.

Dominated convergence

Let 𝑉 ∈ ℒ1(Ω, ℱ, 𝑃). Let sequence (𝑋𝑛)𝑛 satisfy |𝑋𝑛| ≤ 𝑉 for every 𝑛 and 𝑋𝑛 → 𝑋a.s.,
then for any sequence of versions of conditional expectations of (𝑋𝑛)𝑛 and 𝑋

𝔼 [𝑋𝑛 ∣ 𝒢] → 𝔼 [𝑋 ∣ 𝒢] a.s.

Proof. Let 𝑌𝑛 = inf𝑚≥𝑛 𝑋𝑚 and 𝑍𝑛 = sup
𝑚≥𝑛

𝑋𝑚. Hence −𝑉 ≤ 𝑌𝑛 ≤ 𝑍𝑛 ≤ 𝑉. As
𝑌𝑛 ↑ 𝑋 and 𝑍𝑛 ↓ 𝑋. By the conditional monotone convergence Theorem (Theorem 11.4)),
𝔼 [𝑌𝑛 ∣ 𝒢] ↑ 𝔼[𝑋 ∣ 𝒢] and 𝔼 [𝑍𝑛 ∣ 𝒢] ↓ 𝔼[𝑋 ∣ 𝒢]p.s. Observe that for every 𝑛

𝔼 [𝑌𝑛 ∣ 𝒢] ≤ 𝔼 [𝑋𝑛 ∣ 𝒢] ≤ 𝔼 [𝑍𝑛 ∣ 𝒢] a.s.

Jensen’s inequality also has a conditional version. The proof relies again on the varia-
tional representationof convex lower semi-comntinuous functions andon themonotonicity
property of conditional expectation (Corollary 11.1)).

Jensen's inequality

If 𝑔 is a lower semi-continuous convex function on ℝ, with 𝔼 [|𝑔(𝑋)|] < ∞ then

𝑔 (𝔼 [𝑋 ∣ 𝒢]) ≤ 𝔼 [𝑔(𝑋) ∣ 𝒢] a.s..

Proof. A lower semi-continuous convex function is a countable supremum of affine func-
tions: there exists a countable collection (𝑎𝑛, 𝑏𝑛)𝑛 such that for every 𝑥:

𝑔(𝑥) = sup
𝑛

[𝑎𝑛𝑥 + 𝑏𝑛] .

𝑔 (𝔼 [𝑋 ∣ 𝒢]) = sup
𝑛

[𝑎𝑛𝔼 [𝑋 ∣ 𝒢] + 𝑏𝑛]

= sup
𝑛

[𝔼 [𝑎𝑛𝑋 + 𝑏𝑛 ∣ 𝒢]]

≤ 𝔼 [sup
𝑛

(𝑎𝑛𝑋 + 𝑏𝑛) ∣ 𝒢] 𝑃-a.s.
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Independence

When the conditioning 𝜎-algebra 𝒢 is atomic, if the conditioned random variable 𝑋 is
independent from the conditioning 𝜎-algebra, it is obvious that the conditional expectation
is an a.s. constant random variable which value equals 𝔼𝑋. This remains true in the general
framework. It deserves a proof.

Proposition 11.4. If 𝑋 is independent from 𝒢, then

𝔼 [𝑋 ∣ 𝒢] = 𝔼 [𝑋] .

Proof. Note that 𝔼 [𝑋] is 𝒢-measurable. Let 𝐵 ∈ 𝒢,

𝔼 [𝕀𝐵𝑋] = 𝔼 [𝕀𝐵] 𝔼 [𝑋]
by independence

= 𝔼 [𝕀𝐵 × 𝔼 [𝑋]] .

Hence 𝔼 [𝑋] = 𝔼 [𝑋 ∣ 𝒢].

Proposition 11.4 can be generalized to a more general setting.
If sub-𝜎-algebra ℋ is independent from 𝜎(𝒢, 𝜎(𝑋)) then

𝔼 [𝑋 ∣ 𝜎(𝒢, ℋ)] = 𝔼 [𝑋 ∣ 𝒢] a.s.

Proof. Recall that conditional expectation with respect to 𝜎(𝒢, ℋ) can be characterized
using a 𝜋-system containing Ω and generating 𝜎 (𝒢, ℋ), for example 𝒢 × ℋ. Let 𝐵 ∈ 𝒢
and 𝐶 ∈ ℋ,

𝔼 [𝕀𝐵𝕀𝐶𝔼 [𝑋 ∣ 𝒢]] = 𝔼 [𝕀𝐵𝔼 [𝑋 ∣ 𝒢]] × 𝔼 [𝕀𝐶]
𝐶 is independent from 𝜎(𝒢, 𝜎(𝑋))

= 𝔼 [𝕀𝐵𝑋] × 𝔼 [𝕀𝐶]
= 𝔼 [𝕀𝐶𝕀𝐵𝑋]

𝐶 is independent from 𝜎(𝒢, 𝜎(𝑋)) .

11.6 Conditional probability distributions

Easy case: conditioning with respect to a discrete 𝜎-algebra

We come back to the basic setting: (Ω, ℱ, 𝑃) refers to a probability space while 𝒢 ⊆ ℱ
denotes an atomic sub-𝜎-algebra generated by a countable partition (𝐴𝑛)𝑛 of Ω.
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Either from conditional expectations with respect to 𝒢, or from conditional probabili-
ties knowing the events 𝐴𝑛, we can define a 𝑁 function of Ω × ℱ per

𝑁(𝜔, 𝐵) = 𝔼𝑃[𝕀𝐵 ∣ 𝒢](𝜔) = 𝑃{𝐵 ∣ 𝐴𝑛} when 𝜔 ∈ 𝐴𝑛 .

The 𝑁 function has two remarkable properties:

i. For every 𝜔 ∈ Ω, 𝑁(𝜔, ⋅) defines a probability on (Ω, ℱ).
ii. For every event 𝐵 ∈ ℱ, the function 𝑁(⋅, 𝐵) is a 𝒢-measurable function.

In this simple atomic setting, we observe that while it is intuitive to define conditional
expectation starting from conditional probabilities, we can also proceed the other way
around: we can build conditional probabilities starting from conditional expectations.

Impediments

In the general case, we attempt to construct conditional probabilities when the conditioning
𝜎-algebra is not atomic.

For each 𝐵 ∈ ℱ, we can rely on the existence of random variable 𝜎(𝑋)-measurable
which is 𝑃-a.s. a version of the conditional expectation of 𝕀𝐵 with respect to 𝑋. Indeed, for
any kind of countable collection of events (𝐵𝑛)𝑛 of ℱ, we can take for granted that there
exists a collection of random variables which, almost surely, form a consistent collection of
versions of the expectation of (𝕀𝐵𝑛

)𝑛 with respect to 𝑋. If (𝐵𝑛)𝑛 is non-decreasing tending
towards 𝐵, by Theorem 11.4), we are confident in the fact that the following holds

lim
𝑛

↑ 𝔼 [𝕀𝐵𝑛
∣ 𝑋] = 𝔼 [𝕀𝐵 ∣ 𝑋] a.s.

It is therefore tempting to define a conditional probability with respect to 𝜎(𝑋) as a
function

Ω × ℱ → [0, 1]
(𝜔, 𝐵) ↦ 𝔼 [𝕀𝐵 ∣ 𝜎(𝑋)] (𝜔) .

Unfortunately, we cannnot guarantee that 𝑃-a.s., this object has the properties of a
probability distribution (Ω, ℱ). The problem does not arise from the diffuse nature of
the distribution of 𝑋 but from the size of ℱ. As ℱ may not be countable, it is possible to
build an uncountable non-decreasing sequence of events. Checking the a.s. monotonicity
of the sequence of corresponding conditional probabilities looks beyond our reach (an
uncountable union of 𝑃-negligible events is not necessarily 𝑃-negligible).

Fortunately, the situation is not desperate. In most settings envisioned in an intro-
ductory course on Probability, we can take the existence of condition probabilities for
granted.

In Section 11.6), we first review the easy case, where we can define conditional probabili-
ties that even have a density with respect to a reference measure. In Section 11.6) we shall see
that if Ω is not too large, we can rely on the existence of conditional probabilities.
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Joint density setting

If Ω = ℝ𝑘, ℱ = ℬ(ℝ𝑘) and the probability distribution 𝑃 is absolutely continuous with
respect to Lebesgue measure (has a density denoted by 𝑝), defining conditional density
with respect to coordinate projections is almost as simple as conditioning with respect to an
atomic 𝜎-algebra.

For the sake of simplicity, we stick to the case 𝑘 = 2. A generic outcome is denoted by
𝜔 = (𝑥, 𝑦) and the coordinated projections define two random variables 𝑋(𝑥, 𝑦) = 𝑥 and
𝑌 (𝑥, 𝑦) = 𝑦. We denote by 𝑝𝑋 themarginal density of the distribution of 𝑋:

𝑝𝑋(𝑥) = ∫
ℝ

𝑝(𝑥, 𝑦)d𝑦.

And we agree on 𝐷 = {𝑥 ∶ 𝑝𝑋(𝑥) > 0}. This is the support of the density 𝑝𝑋 (beware,
this may be different from the support of distribution 𝑃 ∘ 𝑋−1).

Exercise 11.5. Check that 𝑝𝑋 is the density of 𝑃 ∘ 𝑋−1.

Having a density allows us to calculate conditional expectation and to define just as
easily what we will call a conditional probability of 𝑌 knowing 𝑋.

Theorem 11.6 (Conditional density). Let be 𝑋, 𝑌 be the projection coordinates on

ℝ2. Let 𝑃 be an absolutely continuous distribution on (ℝ2, ℬ(ℝ2)) with density 𝑝(., .)
with respect to Lebesgue’s measure. Let the first marginal density (density of 𝑃 ∘ 𝑋−1

be denoted by 𝑝𝑋.

The function

𝑁 ∶ ℝ2 → [0, ∞)

(𝑥, 𝑦) ↦ 𝑁(𝑥, 𝑦) = {
𝑝(𝑥,𝑦)
𝑝𝑋(𝑥) if 𝑝𝑋(𝑥) > 0
0 otherwise,

satisfies the following properties.

i. For each 𝑥 such that 𝑝𝑋(𝑥) > 0, the set function 𝑃⋅∣𝑋=𝑥 defined by

ℬ(ℝ2) → [0, 1]

𝐵 ↦ 𝑃⋅∣𝑋=𝑥{𝐵} = ∫
ℝ

𝕀𝐵(𝑥, 𝑦)𝑁(𝑥, 𝑦)d𝑦

is a probability measure on (ℝ2, ℬ(ℝ2)). This probability distribution is sup-

ported by {𝑥} × ℝ.

ii. For every 𝐵 ∈ ℬ(ℝ2), the function

𝜔 ↦ ∫
ℝ

𝕀𝐵(𝑋(𝜔), 𝑦)𝑁(𝑋(𝜔), 𝑦)d𝑦 = 𝔼𝑃⋅∣𝑋=𝑋(𝜔)
𝕀𝐵
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for Ω = ℝ2, is 𝜎(𝑋)-measurable and may be called a version of 𝔼[𝕀𝐵 ∣ 𝜎(𝑋)].

iii. For every 𝐵 ∈ ℬ(ℝ2)

𝑃 (𝐵) = ∫ (∫ 𝕀𝐵(𝑠, 𝑦)𝑁(𝑠, 𝑦)d𝑦) 𝑝𝑋(𝑠)d𝑠 = ∫ 𝑃⋅∣𝑋=𝑠(𝐵)𝑝𝑋(𝑠)d𝑠.

iv. For any𝑃-integrable function 𝑓 onℝ2, the random variable defined by applying

𝑥 ↦ ∫
ℝ

𝑓(𝑥, 𝑦)𝑁(𝑥, 𝑦)d𝑦

to 𝑋 is a version of the conditional expectation of 𝑓(𝑋, 𝑌 ) with respect to

𝜎(𝑋).

Remark 11.3. For each 𝑥 such that 𝑝𝑋(𝑥) > 0, 𝑃⋅∣𝑋=𝑥 is a probability on ℝ2. But this
probability measure is supported by {𝑥} × ℝ, it is the product of the Dirac mass in {𝑥}
times the probability distribution on ℝ defined by the density 𝑁(𝑥, ⋅). This is why 𝑁(𝑥, ⋅)
is often called the conditional density of 𝑌 given 𝑋 = 𝑥, and the distribution over ℝ defined
by this density is often called the conditional distribution of 𝑌 given 𝑋.

Exercise 11.6. Is 𝑁(𝑥, 𝑦) a probability density? If yes, with respect to which 𝜎-finite
measure?

The proof of Theorem 11.6) consists of milking the Tonelli-Fubini Theorem.

Proof. Proof of (i). Let us agree on notation:

𝑃𝑥{𝐵} = ∫
ℝ

𝕀𝐵(𝑥, 𝑦)𝑁(𝑥, 𝑦)d𝑦.

The fact that the 𝑃𝑥 is [0, 1]-valued is immediate. Same for the fact that 𝑃𝑥({𝑥} × {∅}) = 0
and 𝑃𝑥({𝑥} × {ℝ}) = 1. The same applies to additivity.

It remains to check that if (𝐵𝑛) is a non-decreasing sequence of Borelians from ℝ2 that
tends to to a limit 𝐵 then

lim
𝑛

↑ 𝑃𝑥(𝐵𝑛) = 𝑃𝑥(𝐵) .

This is an immediate consequence of the monotonous convergence theorem, for each
(𝑥′, 𝑦′) lim𝑛 ↑ 𝕀𝐵𝑛

(𝑥′, 𝑦′)𝑁(𝑥′, 𝑦′) = 𝕀𝐵(𝑥′, 𝑦′)𝑁(𝑥′, 𝑦′).
Proof of ii) As the function (𝑥, 𝑦) ↦ 𝑝(𝑥, 𝑦)𝕀𝐵(𝑥, 𝑦) is ℬ(ℝ2)-measurable and inte-

grable, by the Tonelli-Fubini Theorem,

𝑥 ↦ ∫
𝐵

𝑝(𝑥, 𝑦)𝕀𝐵(𝑥, 𝑦)d𝑦

is defined almost everywhere and Borel-measurable.
Proof of iii) This is also an immediate consequence of the Tonelli-Fubini Theorem.
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Proof of iv), It follows from i.), using the usual approximation by simple functions
argument.

Exercise 11.7. We consider the uniform law on the surface of ℝ2 defined by 0 ≤ 𝑥 ≤
𝑦 ≤ 𝑦 ≤ 1. Give the attached density 𝑝(), the marginal density 𝑝𝑋 and the kernel
𝑁(, ).

Regular conditional probabilities, kernels

We will outline some results that allow us to work within a more general framework. We
introduce two new notions.

Conditional probability kernel

Let (Ω, ℱ) be a measurable space, and 𝒢 a sub-𝜎-algebra of ℱ.
We call conditional probability kernel with respect to 𝒢 a function 𝑁 ∶ Ω × ℱ → ℝ+

that satisfies:

i. For any 𝜔 ∈ Ω, 𝑁(𝜔, ⋅) defines a probability on (Ω, ℱ).
ii. For any 𝐴 ∈ ℱ, 𝑁(⋅, 𝐴) is 𝒢-measurable

If the measurable space is endowed with a probability distribution 𝑃, we are interested
in conditional probability kernels with respect to 𝒢 that are compliant with 𝑃. We call them
regular conditional probability kernels.

Regular conditional probability

Let (Ω, ℱ, 𝑃)be a probability space and𝒢 ⊆ ℱ a sub-𝜎-algebra. A kernel𝑁 ∶ Ω×ℱ → ℝ+
is a regular conditional probability with respect 𝒢 if and only if

i. For any 𝐵 ∈ ℱ, 𝜔 ↦ 𝑁(𝜔, 𝐵) is a version of the conditional expectation of 𝕀𝐵
knowing 𝒢 (𝑁(⋅, 𝐵) is therefore 𝒢-measurable):

𝑁(⋅, 𝐵) = 𝔼[𝕀𝐵 ∣ 𝒢] 𝑃 − a.s.

ii. For 𝑃-almost all 𝜔 ∈ Ω, 𝐵 ↦ 𝑁(𝜔, 𝐵) defines a probability on (Ω, ℱ).

A regular conditional probability (whenever it exists) is defined from versions of condi-
tional expectations. Conversely, a regular conditional probability provides us with a way to
to compute conditional expectations.

Let (Ω, ℱ, 𝑃) be a probability space and 𝒢 ⊆ ℱ a sub-𝜎-algebra. Let 𝑁 be a probability
kernel on (Ω, ℱ) with respect to 𝒢.

The following properties are equivalent

1. 𝑁(⋅, ⋅) defines a regular conditional probability kernel with respect to𝒢 for (Ω, 𝒢, 𝑃 ).

ma1ay010 108 m1 isifar



11.6. CONDITIONAL PROBABILITY DISTRIBUTIONS

2. 𝑃-almost surely, for any 𝑃-integrable function 𝑓 on (Ω, ℱ):

𝔼 [𝑓 ∣ 𝒢] (𝜔) = 𝔼𝑁(𝜔,⋅)[𝑓] .

3. For any 𝑃-integrable random variable 𝑋 on (Ω, ℱ)

𝔼 [𝑋] = 𝔼 [𝔼𝑁(𝜔,⋅)[𝑋]] .

Remark 11.4. The proof of 1) ⇒ 2) relies on the usual machinery: approximation of
positive integrable functions by an increasing sequences of simple functions, monotone
convergence of expectation and conditional expectation.

2) ⇒ 3) is trivial.
3) ⇒ 1) is more interesting.

Existence of regular conditional probability distributions when Ω = ℝ

We shall check the existence of conditional probabilities in at least one non-trivial case.
Let 𝑃 be a probability on (ℝ, ℬ(ℝ)) and 𝒢 ⊆ ℬ(ℝ), then there exists a regular condi-

tional probability kernel with respect to 𝒢.
We take advantage of the fact that ℬ(ℝ) is countably generated.

Proof. Let 𝒞 be the set formed by half-lines with rational endpoint, the empty set, and ℝ:

𝒞 = {(−∞, 𝑞] ∶ 𝑞 ∈ ℚ} ∪ {∅, ℝ} .

This countable collection of half-lines is a 𝜋-system (See Section 2.6)) that generates ℬ(ℝ).
For 𝑞 < 𝑞′ ∈ ℚ, we can choose versions of 𝑌𝑞 and 𝑌𝑞′ of the conditional expectations

of 𝕀(−∞,𝑞] and 𝕀(−∞,𝑞′] such that

𝑌𝑞 < 𝑌𝑞′ 𝑃-a.s.

Observe that 𝑌𝑞′ − 𝑌𝑞 is also a version of the conditional expectation of 𝕀(𝑞,𝑞′].
A countable union of 𝑃-negligible events is 𝑃-negligible, so, as ℚ2 is countable, we can

choose versions (𝑌𝑞)
𝑞∈ℚ

of the conditional expectations of 𝕀(−∞,𝑞] such that

𝑃-a.s. ∀𝑞, 𝑞′ ∈ ℚ, 𝑞 < 𝑞′ ⇒ 𝑌𝑞 < 𝑌𝑞′ ,

Let Ω0 be the 𝑃-almost sure event on which all 𝑌𝑞, 𝑞 ∈ ℚ satisfy the good properties.
For each 𝑥 ∈ ℝ, we can define 𝑍𝑥 for each 𝜔 ∈ ℝ by

𝑍𝑥(𝜔) = inf{𝑌𝑞(𝜔) ∶ 𝑞 ∈ ℚ, 𝑥 < 𝑞}

On Ω0, the function 𝑥 ↦ 𝑍𝑥(𝜔) is increasing, it has a limit on the left at each point and it is
right-continuous. The function 𝑥 ↦ 𝑍𝑥(𝜔) tends to 0 when 𝑥 tends to −∞, to 1 when 𝑥
tends towards +∞. In words, on Ω0, 𝑥 ↦ 𝑍𝑥(𝜔) is a cumulative distribution function, it
defines so (uniquely) a unique probability measure on ℝ. We will denote it by 𝜈(𝜔, .).
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In addition, for each 𝑥, 𝑍𝑥 is defined as a countable infimum of 𝒢-measurable random
variables, 𝑍𝑥 is therefore 𝒢-measurable.

It remains to check that for every 𝐵 ∈ ℱ, 𝜔 ↦ 𝜈(𝜔, 𝐵) for 𝜔 ∈ Ω0, 0 elsewhere, defines
a version of the conditional expectation of 𝕀𝐵 with respect to 𝒢.

This property is satisfied for 𝐵 ∈ 𝒞.
Let us call 𝒟 the set of all the events for which 𝜔 ↦ 𝜈(𝜔, 𝐵) (onΩ0, 0 elsewhere) defines

a version of the conditional expectation of 𝕀𝐵 with respect to 𝒢. We shall show that 𝒟 is a
𝜆-system, that is

i. 𝒟 contains ∅ and ℝ = Ω.
ii. If 𝐵, 𝐵′ belong to 𝒟, and 𝐵 ⊆ 𝐵′ then 𝐵′ ∖ 𝐵 ∈ 𝒟.
iii. If (𝐵𝑛)𝑛 is a growing sequence of events from 𝒟, limit 𝐵 then 𝐵 ∈ 𝒟.

Clause i.) is guaranteed by construction.
Clause ii.) If 𝐵′ ⊆ 𝐵 belong to 𝒟, then by linearity of conditional expectations, if

𝔼 [𝕀𝐵′∖𝐵 ∣ 𝒢] is a version of the conditional expectation of 𝕀𝐵′∖𝐵 with respect to 𝒢, on an
almost-sure event Ω1 ⊆ Ω0:

𝔼 [𝕀𝐵′∖𝐵 ∣ 𝒢] = 𝔼 [𝕀𝐵′ − 𝕀𝐵 ∣ 𝒢]
= 𝔼 [𝕀𝐵′ ∣ 𝒢] − 𝔼 [𝕀𝐵 ∣ 𝒢]
= 𝜈(𝜔, 𝐵′) − 𝜈(𝜔, 𝐵)
= 𝜈(𝜔, 𝐵′ ∖ 𝐵) .

Clause iii.). If (𝐵𝑛)𝑛 is a non-decreasing sequence of events from 𝒟, with 𝐵𝑛 ↑ 𝐵, if
𝔼 [𝕀𝐵 ∣ 𝒢] is a version of the conditional expectation of 𝕀𝐵 with respect to 𝒢, on an event
Ω1 ⊆ Ω0 with probability 1:

𝔼 [𝕀𝐵 ∣ 𝒢] = lim
𝑛

𝔼 [𝕀𝐵𝑛
∣ 𝒢] = lim

𝑛
𝜈(𝜔, 𝐵𝑛) = 𝜈(𝜔, 𝐵) .

So 𝐵 ∈ 𝒟.
The Monotone class Theorem (Section 2.6)) tells us that ℱ ⊆ 𝒟.

Working harder would allow us to show that the existence of regular conditional prob-
abilities is guaranteed as soon as Ω can be endowed with a complete and separable metric
space structure and that the 𝜎-algebra ℱ is the Borelian 𝜎-algebra induced by this metric.

We often define a probability distribution starting from a marginal distribution and a
kernel.

Let (Ω, ℱ) be a measurable space, 𝑋 a random variable from (Ω, ℱ), and 𝑁 a con-
ditional probability kernel with respect to 𝜎(𝑋). Let 𝑃𝑋 be a probability measure on
(Ω𝜎(𝑋)).

Then there exists a unique probability measure 𝑃 on (Ω, ℱ) such that 𝑃𝑋 = 𝑃 ∘ 𝑋−1

and 𝑁 is a regualr conditional probability kernel with respect to 𝜎(𝑋), we have for every
𝐵 ∈ ℱ:

𝑃(𝐵) = ∫
𝑋(Ω)

𝑁(𝑥, 𝐵)d𝑃𝑥(𝑥)

The following theorem guarantees the existence of a regular conditional probability in
all the scenarios we are interested in.
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11.7 Efron-Stein-Steele inequalities

In this section, 𝑋1, … , 𝑋𝑛 denote independent random variables on some probability space
with values in 𝒳1, … , 𝒳𝑛, and 𝑓 denote a measurable function from 𝒳1 × … × 𝒳𝑛 to
ℝ. Let 𝑍 = 𝑓(𝑋1, … , 𝑋𝑛). The random variable 𝑍 is a general function of independent
random variables. We assume 𝑍 is integrable.

If we had 𝑍 = ∑𝑛
𝑖=1 𝑋𝑖, we could write

var(𝑍) =
𝑛

∑
𝑖=1

var(𝑋𝑖) =
𝑛

∑
𝑖=1

𝔼[ var(𝑍 ∣ 𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … 𝑋𝑛)]

even though the last expression looks pedantic. The aim of this section is to show that even
if 𝑓 is not as simple as the sum of its arguments, the last expression can still serve as an upper
bound on the variance.

It is a natural idea to bound the variance of such a general function by expressing𝑍 −𝔼𝑍
as a sum of differences and to use the orthogonality of these differences.

More precisely, if we denote by 𝔼𝑖 the conditional expectation operator, conditioned
on (𝑋1, … , 𝑋𝑖), and use the convention 𝔼0 = 𝔼, then we may define

Δ𝑖 = 𝔼𝑖𝑍 − 𝔼𝑖−1𝑍

for every 𝑖 = 1, … , 𝑛.

Exercise 11.8. Check that 𝔼Δ𝑖 = 0 and that for 𝑗 > 𝑖, 𝔼𝑖Δ𝑗 = 0 a.s.

Starting from the decomposition

𝑍 − 𝔼𝑍 =
𝑛

∑
𝑖=1

Δ𝑖

one has

var (𝑍) = 𝔼 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

Δ𝑖)
2

⎤⎥
⎦

=
𝑛

∑
𝑖=1

𝔼 [Δ2
𝑖 ] + 2 ∑

𝑗>𝑖
𝔼 [Δ𝑖Δ𝑗] .

Now if 𝑗 > 𝑖, 𝔼𝑖Δ𝑗 = 0 implies that

𝔼𝑖 [Δ𝑗Δ𝑖] = Δ𝑖𝔼𝑖Δ𝑗 = 0 ,

and, a fortiori, 𝔼 [Δ𝑗Δ𝑖] = 0. Thus, we obtain the following analog of the additivity
formula of the variance:

var (𝑍) = 𝔼 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

Δ𝑖)
2

⎤⎥
⎦

=
𝑛

∑
𝑖=1

𝔼 [Δ2
𝑖 ] .

Observe that up to now, we have not made any use of the fact that 𝑍 is a function of
independent variables 𝑋1, … , 𝑋𝑛.
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Independence may be used as in the following argument: for any integrable function
𝑍 = 𝑓 (𝑋1, … , 𝑋𝑛) one may write, by the Tonelli-Fubini theorem,

𝔼𝑖𝑍 = ∫
𝒳𝑛−𝑖

𝑓 (𝑋1, … , 𝑋𝑖, 𝑥𝑖+1, … , 𝑥𝑛) 𝑑𝜇𝑖+1 (𝑥𝑖+1) … 𝑑𝜇𝑛 (𝑥𝑛) ,

where, for every 𝑗 = 1, … , 𝑛, 𝜇𝑗 denotes the probability distribution of 𝑋𝑗.
Also, if we denote by 𝔼(𝑖) the conditional expectation operator conditioned on
𝑋(𝑖) = (𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛), we have

𝔼(𝑖)𝑍 = ∫
𝒳

𝑓 (𝑋1, … , 𝑋𝑖−1, 𝑥𝑖, 𝑋𝑖+1, … , 𝑋𝑛) 𝑑𝜇𝑖 (𝑥𝑖) .

Then, again by the Tonelli-Fubini theorem,

𝔼𝑖 [𝔼(𝑖)𝑍] = 𝔼𝑖−1𝑍.(#𝑒𝑞 ∶ 𝑒𝑓𝑢𝑛𝑑𝑖𝑛𝑑) (11.1)

This observation is the key in the proof of the main result of this section which we state
next:

Theorem 11.7 (Efron-Stein-Steele’s inequalities). Let 𝑋1, … , 𝑋𝑛 be independent

random variables and let 𝑍 = 𝑓(𝑋) be a square-integrable function of 𝑋 =
(𝑋1, … , 𝑋𝑛). Then

var (𝑍) ≤
𝑛

∑
𝑖=1

𝔼 [(𝑍 − 𝔼(𝑖)𝑍)2] = 𝑣 .

Moreover if 𝑋′
1, … , 𝑋′

𝑛 are independent copies of 𝑋1, … , 𝑋𝑛 and if we define, for

every 𝑖 = 1, … , 𝑛,

𝑍′
𝑖 = 𝑓 (𝑋1, … , 𝑋𝑖−1, 𝑋′

𝑖 , 𝑋𝑖+1, … , 𝑋𝑛) ,

then

𝑣 = 1
2

𝑛
∑
𝑖=1

𝔼 [(𝑍 − 𝑍′
𝑖 )2] =

𝑛
∑
𝑖=1

𝔼 [(𝑍 − 𝑍′
𝑖 )2

+] =
𝑛

∑
𝑖=1

𝔼 [(𝑍 − 𝑍′
𝑖 )2

−]

where 𝑥+ = max(𝑥, 0) and 𝑥− = max(−𝑥, 0) denote the positive and negative parts

of a real number 𝑥. Also,

𝑣 = inf
𝑍𝑖

𝑛
∑
𝑖=1

𝔼 [(𝑍 − 𝑍𝑖)
2] ,

where the infimum is taken over the class of all 𝑋(𝑖)-measurable and square-

integrable variables 𝑍𝑖, 𝑖 = 1, … , 𝑛.

Proof. We begin with the proof of the first statement. Note that, using @ref(eq:efundind),
we may write

Δ𝑖 = 𝔼𝑖 [𝑍 − 𝔼(𝑖)𝑍] .
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By the conditional Jensen inequality,

Δ2
𝑖 ≤ 𝔼𝑖 [(𝑍 − 𝔼(𝑖)𝑍)2] .

Using var(𝑍) = ∑𝑛
𝑖=1 𝔼 [Δ2

𝑖 ], we obtain the desired inequality. To prove the identities for
𝑣, denote by var(𝑖) the conditional variance operator conditioned on 𝑋(𝑖). Then we may
write 𝑣 as

𝑣 =
𝑛

∑
𝑖=1

𝔼 [var(𝑖) (𝑍)] .

Now note that one may simply use (conditionally) the elementary fact that if 𝑋 and 𝑌
are independent and identically distributed real-valued random variables, then var(𝑋) =
(1/2)𝔼[(𝑋 − 𝑌 )2]. Since conditionally on 𝑋(𝑖), 𝑍′

𝑖 is an independent copy of 𝑍, we may
write

var(𝑖) (𝑍) = 1
2

𝔼(𝑖) [(𝑍 − 𝑍′
𝑖 )2] = 𝔼(𝑖) [(𝑍 − 𝑍′

𝑖 )2
+] = 𝔼(𝑖) [(𝑍 − 𝑍′

𝑖 )2
−]

where we used the fact that the conditional distributions of 𝑍 and 𝑍′
𝑖 are identical. The

last identity is obtained by recalling that, for any real-valued random variable 𝑋, var(𝑋) =
inf𝑎∈ℝ 𝔼[(𝑋 − 𝑎)2]. Using this fact conditionally, we have, for every 𝑖 = 1, … , 𝑛,

var(𝑖) (𝑍) = inf
𝑍𝑖

𝔼(𝑖) [(𝑍 − 𝑍𝑖)
2] .

Note that this infimum is achieved whenever 𝑍𝑖 = 𝔼(𝑖)𝑍.

Observe that in the case when 𝑍 = ∑𝑛
𝑖=1 𝑋𝑖 is a sum of independent random variables

(with finite variance) then the Efron-Stein-Steele inequality becomes an equality. Thus, the
bound in the Efron-Stein-Steele inequality is, in a sense, not improvable.

11.8 Bounded differences inequalities

In this sectionwe combineHoeffding’s inequality and conditioning to establish the so-called
Bounded differences inequality (also known as McDiarmid’s inequality). This inequality
is a first example of the concentration of measure phenomenon. This phenomenon is best
portrayed by the following say:

A function of many independent random variables that does not depend too
much on any of them is concentrated around its mean or median value.

Bounded differences inequalities

Let 𝑋1, … , 𝑋𝑛 be independent random variables on some probability space with values in
𝒳1, 𝒳2, … , 𝒳𝑛. Let 𝑓 ∶ 𝒳1 ×𝒳2 ×…×𝒳𝑛 → ℝ be ameasurable function such that there
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exists non-negative constants 𝑐1, … , 𝑐𝑛 satisfying ∀𝑥1, … , 𝑥𝑛 ∈ ∏𝑛
𝑖=1 𝒳𝑖, ∀𝑦1, … , 𝑦𝑛 ∈

∏𝑛
𝑖=1 𝒳𝑖,

∣𝑓(𝑥1, … , 𝑥𝑛) − 𝑓(𝑦1, … , 𝑦𝑛)∣ ≤
𝑛

∑
𝑖=1

𝑐𝑖𝕀𝑥𝑖≠𝑦𝑖
.

Let 𝑍 = 𝑓(𝑋1, … , 𝑋𝑛) and 𝑣 = ∑𝑛
𝑖=1

𝑐2
𝑖
4 . Then

var(𝑍) ≤ 𝑣 ,

log𝔼e𝜆(𝑍−𝔼𝑍) ≤ 𝜆2𝑣
2

and
𝑃{𝑍 ≥ 𝔼𝑍 + 𝑡} ≤ e− 𝑡2

2𝑣 .

Proof. The variance bound is an immediate consequence of the Efron-Stein-Steele inequal-
ities.

The tail bound follows from the upper bound on the logarithmic moment generating
function by Cramer-Chernoff bounding.

Let us now check the upper-bound on the logarithmic moment generating function.
We proceed by inudction on the number of arguments 𝑛.
If 𝑛 = 1, the upper-bound on the logarithmic moment generating function is just

Hoeffing’s Lemma (see Section 14.7)).
Assume the upper-bound is valid up to 𝑛 − 1.
We adopt the same notation as in Section 11.7).

𝔼e𝜆(𝑍−𝔼𝑍) = 𝔼[𝔼𝑛−1e𝜆(𝑍−𝔼𝑍)]

= 𝔼[𝔼𝑛−1[e𝜆(𝑍−𝔼𝑛−1𝑍)] × e𝜆(𝔼𝑛−1𝑍−𝔼𝑍)] .

Now,
𝔼𝑛−1𝑍 = ∫

𝒳𝑛

𝑓(𝑥1, … , 𝑥𝑛−1, 𝑢)d𝑃𝑋𝑛
(𝑢) a.s.

and

𝔼𝑛−1[e𝜆(𝑍−𝔼𝑛−1𝑍)]

= ∫
𝒳𝑛

exp(𝜆 ∫
𝒳𝑛

𝑓(𝑥1, … , 𝑥𝑛−1, 𝑣) − 𝑓(𝑥1, … , 𝑥𝑛−1, 𝑢)d𝑃𝑋𝑛
(𝑢))d𝑃𝑋𝑛

(𝑣) .

For every 𝑥1, … , 𝑥𝑛−1 ∈ 𝒳1 × … × 𝒳𝑛−1, for every 𝑣, 𝑣′ ∈ 𝒳𝑛,

∣ ∫
𝒳𝑛

𝑓(𝑥1, … , 𝑥𝑛−1, 𝑣) − 𝑓(𝑥1, … , 𝑥𝑛−1, 𝑢)d𝑃𝑋𝑛
(𝑢)

− ∫
𝒳𝑛

𝑓(𝑥1, … , 𝑥𝑛−1, 𝑣′) − 𝑓(𝑥1, … , 𝑥𝑛−1, 𝑢)d𝑃𝑋𝑛
(𝑢)∣ ≤ 𝑐𝑛
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hence, by Hoeffding’s Lemma

𝔼𝑛−1[e𝜆(𝑍−𝔼𝑛−1𝑍)] ≤ e
𝜆2𝑐2𝑛

8 .

𝔼e𝜆(𝑍−𝔼𝑍) ≤ 𝔼[e𝜆(𝔼𝑛−1𝑍−𝔼𝑍)] × e
𝜆2𝑐2𝑛

8 .

But, if 𝑋1 = 𝑥1, … 𝑋𝑛−1 = 𝑥𝑛−1,

e𝜆(𝔼𝑛−1𝑍−𝔼𝑍) = ∫
𝒳𝑛

𝑓(𝑥1, … , 𝑥𝑛−1, 𝑣)d𝑃𝑋𝑛
(𝑣) − 𝔼𝑍 ,

it is a function of 𝑛 − 1 independent random variables that satisfies the bounded differences
conditions with constants 𝑐1, … , 𝑐𝑛−1. By the induction hypothesis:

𝔼[e𝜆(𝔼𝑛−1𝑍−𝔼𝑍)] ≤ e
𝜆2
2 ∑𝑛−1

𝑖=1
𝑐2

𝑖
4 .

11.9 Bibliographic remarks

Conditional expectations can be constructed from the Radon-Nikodym Theorem, see
(Dudley, 2002).

It is also possible to prove theRadon-NikodymTheorem starting from the construction
of conditional expectation in ℒ2, see (Williams, 1991).

The Section on Efron-Stein-Steele’s inequalities is from (Boucheron, Lugosi, &Massart,
2013)

Bounded difference inequality is due to C. McDiarmid. It became popular in (Theoret-
ical) computer science during the 1990’s. See (McDiarmid, 1998)
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Chapter 12

Characterizations of probability
distributions

12.1 Motivation

In full generality, a probability distribution is a complex and opaque object. It is a [0, 1]-
valued function defined over a 𝜎-algebra of subsets of some universe. A concrete 𝜎-algebra,
let alone the abstract notion of 𝜎-algebra, is not easily grasped. Hence, looking for simpler
characterizations of probability distributions is a sensible goal. When facing questions
like: are two probability distributions equal?, we know it suffices to check that the two
distributions coincide on generating 𝜋-classes (see Theorem 11.4 and consequences). This
makes CumulativeDistribution Functions (CDFs) precious tools. CumulativeDistribution
Functions and their generalized inverse functions (quantile functions seeChapter 13) are very
convenient when handlingmaxima, minima, or more generally order statistics of collections
of independent random variables, but when it comes to handling sums of independent
random variables or branching processes, cumulative distribution functions are ofmoderate
help.

In this lesson, we review two related ways of characterizing probability distributions
through functions defined on the real line: Laplace transforms (Section 12.2)) and character-
istic functions which extend Fourier transforms to probability distributions (Section 12.3).
The two methods are distinct in scope but they rely on the same idea as Probability Gener-
ating Functions (Chapter 6) and share common features.

Indeed, Probability Generating Functions can be seen as special case of Laplace trans-
forms. The latter can be seen as special cases of Fourier transforms.All three methods
do characterize probability distributions. They are equipped with inversion formulae.
The three methods provide us with a seamless treatment of sums of independent random
variables. All three methods relate the integrability of probability distributions and the
smoothness of transforms.

In the next lessons (?@sec-chaprevisiCLT), we shall see that the three transforms also
characterize convergence in distribution.

Probability generating functions, Laplace transforms and characteristic functions de-
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liver an important analytical machinery to Probability Theory. From Analysis, we get
off-the-shelf arguments to establish smoothness properties of transforms, and with little
more work, we can construct the inversion formulae.

12.2 Laplace transform

Laplace transforms characterize probability distributions on [0, ∞).

Definition and elementary properties

Definition 12.1. Let 𝑃 be a probability distribution function over [0, ∞] with cumu-
lative distribution function 𝐹. The Laplace transform of 𝑃 is the function 𝑈 from
[0, ∞) to [0, 1] defined by

𝑈(𝜆) = 𝔼 [e−𝜆𝑋] = ∫
[0,∞)

e−𝜆𝑥d𝐹(𝑥)

where 𝑋 ∼ 𝑃.

A probability distribution 𝑃 over ℕ is also a probability distribution over [0, ∞), as
such it has both a probability generating function 𝐺 and a Laplace transform 𝑈. They are
connected by

𝑈(𝜆) = 𝐺(e−𝜆) .

Which properties of Probability Generating Functions are also satisfied by Laplace
transforms?

Proposition 12.1. If 𝑈 ∶ [0, ∞) → [0, 1] is the Laplace transform of a probability

distribution 𝑃 over [0, ∞), then

� 𝑈(0) = 1;
� 𝑈 is continuous;

� 𝑈 is non-increasing.

� 𝑈 is convex.

Exercise 12.1. Check the assertions in the proposition.

Can we recognize Laplace transform of probability distributions over [0, ∞)? This is
the content of the next Theorem (which proof is beyond the reach of this course).

Theorem 12.1 (Bernstein’s Theorem). A function 𝑈 ∶ (0, ∞) → (0, ∞) is the Laplace

transform of a probability distribution over [0, ∞) iff
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� 𝑈 is infinitely many times differentiable over (0, ∞)
� 𝑈(0) = 1
� 𝑈 is completely monotonous: (−1)𝑘𝑈 (𝑘) ≥ 0 over (0, ∞)

Using the connexion between Probability Generating Functions and Laplace trans-
forms, we are in position to characterize those power series that are Probability Generating
Functions.

Corollary 12.1. A function 𝐺 ∶ [0, 1] → [0, 1] is the Probability Generating Function

of a probability distribution over ℕ iff

� 𝐺 is infinitely many times differentiable over (0, 1)
� 𝐺(1) = 1
� 𝐺 is completely monotonous: (−1)𝑘𝐺(𝑘) ≥ 0 over (0, 1)

Example 12.1. Let 𝑋 be Gamma(𝑝, 𝜈)-distributed. The Laplace transform of (the distribu-
tion of) 𝑋 is

𝑈(𝜆) = ∫∞
0

𝜈e−𝜆𝑥e−𝜈𝑥 (𝜈𝑥)𝑝−1

Γ(𝑝) d𝑥
= 𝜈𝑝

(𝜆+𝜈)𝑝 ∫∞
0

(𝜆 + 𝜈)e−(𝜆+𝜈)𝑥 ((𝜈+𝜆)𝑥)𝑝−1

Γ(𝑝) d𝑥
= 𝜈𝑝

(𝜆+𝜈)𝑝 .

Injectivity of Laplace transforms and an inversion formula

Theorem 12.2 (Widder’s Theorem). A probability distribution on [0, ∞) is charac-

terized by its Laplace transform.

The construction of the inversion formula relies on deviation inequalities for Poisson
distribution. The next proposition is easily checked by using Markov’s inequality with
exponential functions and optimization.

Theorem 12.3 (Tail bounds for Poisson distribution). Let 𝑍 be Poisson distributed.

Let ℎ(𝑥) = e𝑥 − 𝑥 − 1 and ℎ∗(𝑥) = (𝑥 + 1) log(𝑥 + 1) − 𝑥, 𝑥 ≥ −1 be its convex

dual. Then for all 𝜆 ∈ ℝ

log𝔼e𝜆(𝑍−𝔼𝑍) = 𝔼𝑍ℎ(𝜆) .

For 𝑡 ≥ 0

Pr{𝑍 ≥ 𝔼𝑍 + 𝑡} ≤ e
−𝔼𝑍ℎ∗( 𝑡

𝔼𝑍 )
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and for 0 ≤ 𝑡 ≤ 𝔼𝑍

Pr{𝑍 ≤ 𝔼𝑍 − 𝑡} ≤ e
−𝔼𝑍ℎ∗( −𝑡

𝔼𝑍 )
.

Remark 12.1.

• See Section 4.3) for the notion of convex duality.
• The next bounds on ℎ∗ deliver looser but easier tail bounds

ℎ∗(𝑡) ≥ 𝑡2

2(1+𝑡/3) for 𝑡 > 0
ℎ∗(𝑡) ≥ 𝑡2

2 for 𝑡 < 0 .

Corollary 12.2. For all positive 𝑥, 𝑦, 𝑦 ≠ 𝑥,

lim
𝑛→∞

𝑛𝑥
∑
𝑘=0

𝑒−𝑛𝑦 (𝑛𝑦)𝑘

𝑘!
= 𝕀𝑦<𝑥 .

We shall check in one of the next lessons that for 𝑥 > 0:

lim
𝑛→∞

⌊𝑛𝑥⌋

∑
𝑘=0

𝑒−𝑛𝑥 (𝑛𝑥)𝑘

𝑘!
= 1

2
.

Proof. Let 𝐹 be the cumulative distribution function of 𝑃 and 𝑈 its Laplace transform. Let
𝑋 ∼ 𝑃.

It suffices to show that 𝐹(𝑥) can be computed from 𝑈 at any 𝑥 where 𝐹 is continuous.
Function 𝑈 is infinitely many times differentiable on (0, ∞). For 𝑘 ∈ ℕ,

d𝑘𝑈
d𝜆𝑘 = (−1)𝑘 ∫

[0,∞)
𝑥𝑘𝑒−𝜆𝑥d𝐹(𝑥) .

and 𝑈 has a power series expansion at every 𝜆 ∈ (0, 1), for 𝜆′ ∈ (0, 1):

𝑈(𝜆′) = ∑∞
𝑘=0

(𝜆′−𝜆)𝑘

𝑘!
d𝑘𝑈
d𝜆𝑘 .

By [Corollary 12.2), for all 0 < 𝑦 ≠ 𝑥, lim𝑛→∞ ∑𝑛𝑥
𝑘=0 𝑒−𝑛𝑦 (𝑛𝑦)𝑘

𝑘! = 𝕀𝑦<𝑥.
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𝐹(𝑥) = ∫
ℝ+

𝕀𝑦≤𝑥d𝐹(𝑦)
= ∫

ℝ+
𝕀𝑦<𝑥d𝐹(𝑦)

= ∫
(−∞,𝑥)

𝕀𝑦<𝑥d𝐹(𝑦) + ∫
{𝑥}

1d𝐹(𝑦) + ∫
(𝑥,∞)

𝕀𝑦<𝑥d𝐹(𝑦)
= ∫

(−∞,𝑥)
𝕀𝑦<𝑥d𝐹(𝑦) + ∫

{𝑥}
1d𝐹(𝑦) + ∫

(𝑥,∞)
𝕀𝑦<𝑥d𝐹(𝑦)

= ∫
(−∞,𝑥)∪(𝑥,∞)

lim𝑛→∞ ∑𝑛𝑥
𝑘=0 𝑒−𝑛𝑦 (𝑛𝑦)𝑘

𝑘! d𝐹(𝑦) + ∫
{𝑥}

1d𝐹(𝑦)

= lim𝑛→∞ ∑𝑛𝑥
𝑘=0

(−𝑛)𝑘

𝑘! ∫
(−∞,𝑥)∪(𝑥,∞)

𝑒−𝑛𝑦(−𝑦)𝑘d𝐹(𝑦) + ∫
{𝑥}

1d𝐹(𝑦)
by dominated convergence
= lim𝑛→∞ ∑𝑛𝑥

𝑘=0
(−𝑛)𝑘

𝑘!
d𝑘𝑈
d𝜆𝑘 ∣𝜆=𝑛

.

If 𝐹 is continuous at 𝑥,

𝐹(𝑥) = lim
𝑛→∞

𝑛𝑥
∑
𝑘=0

(−𝑛)𝑘

𝑘!
d𝑘𝑈
d𝜆𝑘

∣𝜆=𝑛
.

If 𝐹 jumps at 𝑥,

𝐹(𝑥) − 𝑃{𝑋 = 𝑥}
2

= lim
𝑛→∞

𝑛𝑥
∑
𝑘=0

(−𝑛)𝑘

𝑘!
d𝑘𝑈
d𝜆𝑘

∣𝜆=𝑛
.

This process shows that the Laplace transform contains enough information to re-
construct the distribution function which in turn characterizes the probability distribu-
tion.

Laplace transforms of sums of independent non-negative random variables are easily
obtained from the Laplace transforms of the summands.

Proposition 12.2. Let 𝑋 and 𝑌 be two independent [0, ∞)-valued random variables,

with Laplace transforms 𝑈𝑋 and 𝑈𝑌. The Laplace transform of (the distribution of)

𝑋 + 𝑌 is

𝐺𝑋+𝑌 = 𝐺𝑋 × 𝐺𝑌 .

Proof.

𝐺𝑋+𝑌(𝜆) = 𝔼[e𝜆(𝑋+𝑌 )]

= 𝔼[e𝜆𝑋 × e𝜆𝑌]

= 𝔼[e𝜆𝑋] × 𝔼[e𝜆𝑌]
independence
= 𝐺𝑋(𝜆) × 𝐺𝑌(𝜆) .
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Combining the inversion theorem and the explicit formula for the Laplace transform
of Gamma distributions, we recover the fact that sums of independent Gamma-distributed
random variables with the same intensity parameter is also Gamma distributed.

Corollary 12.3. If 𝑋 ∼ Gamma(𝑝, 𝜆) is independent from 𝑌 ∼ Gamma(𝑞, 𝜆) then

𝑋 + 𝑌 has Laplace transform ( 𝜈
𝜆+𝜈)

𝑝+𝑞
and is Gamma(𝑝 + 𝑞, 𝜆)-distributed.

Laplace transform smoothness and integrability

12.3 Characteristic functions and Fourier transforms

The Laplace transform characterizes probability distributions supported by [0, ∞). Charac-
teristic functions deal with general probability distributions. They extend to multivariate
distributions.

Characteristic function

The next transform can be defined for all probability distributions over ℝ. And the defini-
tion can be extended to distributions on ℝ𝑘, 𝑘 ≥ 1.

Definition 12.2 (Characteristic function). Let the real-valued random variable 𝑋 be
distributed according to 𝑃 with cumulative distribution function 𝐹, the characteristic
function of distribution 𝑃 is the function from ℝ to ℂ defined by

̂𝐹 (𝑡) = 𝔼 [e𝑖𝑡𝑋] = ∫
ℝ
e𝑖𝑡𝑥d𝐹(𝑥) = ∫

ℝ
cos(𝑡𝑥)d𝐹(𝑥) + 𝑖 ∫

ℝ
sin(𝑡𝑥)d𝐹(𝑥) .

Remark 12.2. If 𝐹 is absolutely continuous with density 𝑓 then ̂𝐹 is (up to a multiplicative
constant) the Fourier transform of 𝑓.

Proposition 12.3. Let the real-valued random variable 𝑋 be distributed according

to 𝑃 with characteristic function ̂𝐹.

� ̂𝐹 is (uniformly) continuous over ℝ
� ̂𝐹 (0) = 1
� If 𝑋 is symmetric, ̂𝐹 is real-valued

� The characteristic function of the distribution of 𝑎𝑋 + 𝑏 is

e𝑖𝑡𝑏 ̂𝐹 (𝑎𝑡) .

Proof. Let us check the continuity property. The three others are left as exercises.
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Trigonometric calculus leads to

∣e𝑖(𝑡+𝛿)𝑥 − e𝑖𝑡𝑥∣ = ∣e𝑖𝑡𝑥∣ × ∣e𝑖𝛿𝑥 − 1∣

≤ ∣e𝑖𝛿𝑥 − 1∣

≤ 2(1 ∧ ∣𝛿𝑥∣)

for every 𝑡 ∈ ℝ, 𝛿 ∈ ℝ, 𝑥 ∈ ℝ. Taking integration with respect to 𝐹,

∣ ̂𝐹 (𝑡 + 𝛿) − ̂𝐹 (𝑡)∣ ≤ ∫ 2(1 ∧ ∣𝛿𝑥∣)d𝐹(𝑥) .

Resorting to the dominated convergence theorem, we conclude

lim
𝛿→0

∣ ̂𝐹 (𝑡 + 𝛿) − ̂𝐹 (𝑡)∣ = 0

uniformly in 𝑡.

Exercise 12.2. The next properties are easily checked:

• | ̂𝐹 (𝑡)| ≤ 1 for every 𝑡 ∈ ℝ;
•

Exercise 12.3. Compute the characteristic function of:

• The Poisson distribution with parameter 𝜆 > 0;
• The uniform distribution on [−1, 1];
• The triangle distribution on [−1, 1] (density: 1 − |𝑥| on [−1, 1]);
• The Laplace distribution, density 1/2 exp(−|𝑥|).
• The exponential distribution with density exp(−𝑥) on [0, +∞);

Just as Probability Generating Functions and Laplace transforms, Characteristic func-
tions of sums of independent random variables have a simple structure.

Proposition 12.4. Let 𝑋 and 𝑌 be independent random variables with cumulative

distribution functions 𝐹𝑋 and 𝐹𝑌, then

̂𝐹𝑋+𝑌(𝑡) = ̂𝐹𝑋(𝑡) × ̂𝐹𝑌(𝑡)

for all 𝑡 ∈ ℝ.

Proof. The third equality is a consequence of the independence of 𝑋 and 𝑌:

̂𝐹𝑋+𝑌(𝑡) = 𝔼[e𝑖𝑡(𝑋+𝑌 )]

= 𝔼[e𝑖𝑡𝑋e𝑖𝑡𝑌]

= 𝔼[e𝑖𝑡𝑋] × 𝔼[e𝑖𝑡𝑌]
= ̂𝐹𝑋(𝑡) × ̂𝐹𝑌(𝑡) .
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Exercise 12.4. Use a counter-example to prove that

(∀𝑡 ∈ ℝ, ̂𝐹𝑋+𝑌(𝑡) = ̂𝐹𝑋(𝑡) × ̂𝐹𝑌(𝑡)) ⇏ 𝑋 ⟂⟂ 𝑌 .

Characteristic function of a univariate Gaussian distribution

It is possible to compute characteristic functions by resorting to Complex Analysis. But we
shall refrain from this when computing the most important characteristic function, the
characteristic function of the standard Gaussian distribution.

Proposition 12.5. Let Φ̂ denote the characteristic function of the standard univariate

Gaussian distribution 𝒩(0, 1), the following holds

Φ̂(𝑡) = e− 𝑡2
2 .

Proof. Recall that as the standard Gaussian density is even, the characteristic function is
real-valued and even.

Moreover, Φ̂ is differentiable and the derivative can be computing by interverting
expectation and derivation with respect to 𝑡.

Φ̂′(𝑡) = −𝔼 [𝑋 sin(𝑡𝑋)]
= − 1√

2𝜋 ∫
ℝ

𝑥 sin(𝑡𝑥)e− 𝑥2
2 d𝑥

= 1√
2𝜋[ sin(𝑡𝑥)e− 𝑥2

2 ]
∞

−∞
− 𝑡 1√

2𝜋 ∫
ℝ
cos(𝑡𝑥)e− 𝑥2

2 d𝑥

= −𝑡Φ̂(𝑡) .

Hence, ̂𝐹 is a solution of the differential equation: 𝑔′(𝑡) = −𝑡𝑔(𝑡) with 𝑔(0) = 1.
The differential equation is readily solved, and the solution is 𝑔(𝑡) = e− 𝑡2

2 .

Exercise 12.5. Why is Φ̂differentiable? Why arewe allowed to interchange expectation
and derivation?

Note that a byproduct of Proposition 12.5 is the following integral representation of
the Gaussian density.

𝜙(𝑥) = 1
2𝜋

∫
ℝ

Φ̂(𝑡)e−𝑖𝑡𝑥d𝑡 .

It does not look interesting, but it is a milestone for the derivation of the general
inversion formula below.
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Sums of independent random variables and convolutions

The interplay between Characteristic functions/Fourier transforms and summation of
independent random variables is one of the most attractive features of this transformation.
In order to understand it, we shall need an operation stemming from analysis. Recall that if
𝑓 and 𝑔 are two integrable functions, the convolution of 𝑓 and 𝑔 is defined as

𝑓 ⋆ 𝑔(𝑥) = ∫
ℝ

𝑓(𝑥 − 𝑦)𝑔(𝑦)d𝑦 = ∫
ℝ

𝑔(𝑥 − 𝑦)𝑓(𝑦)d𝑦 .

Note that 𝑓 ⋆ 𝑔 is also integrable. It is not too hard to check that if 𝑓 and 𝑔 are two
probability densities then so is 𝑓 ⋆𝑔, moreover 𝑓 ⋆𝑔 is the density of the distribution of𝑋+𝑌
where 𝑥 ∼ 𝑓 is independent from 𝑌 ∼ 𝑔. The next proposition extends this observation.

Proposition 12.6. Let 𝑋, 𝑌 be two independent random variables with distributions

𝑃𝑋 and 𝑃𝑌. Assume that 𝑃𝑋 is absolutely continuous with density 𝑝𝑋. Then the

distribution of 𝑋 + 𝑌 is absolutely continuous and has density

𝑝𝑥 ⋆ 𝑃𝑌(𝑧) = ∫
ℝ

𝑝𝑋(𝑧 − 𝑦)d𝑃𝑌(𝑦) .

Proof. Let 𝐵 be Borel subset of ℝ.

𝑃{𝑋 + 𝑌 ∈ 𝐵} = ∫
ℝ

( ∫
ℝ

𝕀𝐵(𝑥 + 𝑦)𝑝𝑋(𝑥)d𝑥)d𝑃𝑌(𝑦)

= ∫
ℝ

( ∫
ℝ

𝕀𝐵(𝑧)𝑝𝑋(𝑧 − 𝑦)d𝑧)d𝑃𝑌(𝑦)

= ∫
ℝ

𝕀𝐵(𝑧)( ∫
ℝ

𝑝𝑋(𝑧 − 𝑦)d𝑃𝑌(𝑦))d𝑧
= ∫

ℝ
𝕀𝐵(𝑧)𝑝𝑥 ⋆ 𝑃𝑌(𝑧)d𝑧

where the first equality follows from the Tonelli-Fubini Theorem, the second equality is
obtained by change of variable 𝑥 ↦ 𝑧 = 𝑥 + 𝑦 for every 𝑦, the third equality follows again
from the Tonelli-Fubini Theorem.

Remark 12.3. Convolution is not tied to Probability theory.

• In Analysis, convolution is known to be a regularizing (smoothing) operation. This
also holds in Probability theory: if the distribution of either 𝑋 or 𝑌 has a density and
𝑋 ⟂⟂ 𝑌, then the distribution of 𝑋 + 𝑌 has a density.

• Convolution with smooth distributions plays an important role in non-parametric
statsitics, it is at the root of kernel density estimation.

• Convolution is an important tool in Signal Processing.

Exercise 12.6. Check that if 𝑋 and 𝑌 are independent with densities 𝑓𝑋 and 𝑓𝑌,
𝑓𝑋 ⋆ 𝑓𝑌 is a density of the distribution of 𝑋 + 𝑌.
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If 𝑌 = 0 almost surely (its distribution is 𝛿0), then 𝑝𝑋 ⋆ 𝛿0 = 𝑝𝑋.
What happens in Proposition 12.6 if we consider the distributions of 𝜎𝑋 + 𝑌 and let 𝜎

decrease to 0? This is the content of the next proposition.

Proposition 12.7. Let 𝑋, 𝑌 be two independent random variables with distributions

𝑃𝑋 and 𝑃𝑌. Assume that 𝑃𝑋 is absolutely continuous with density 𝑝𝑋 and that

𝑃𝑋(−∞, 0] = 𝛼 ∈ (0, 1). Then

lim
𝜎↓0

ℙ{𝑌 + 𝜎𝑋 ≤ 𝑎} = 𝑃𝑌(−∞, 𝑎) + 𝛼𝑃𝑌{𝑎} .

Proof.

ℙ{𝑌 + 𝜎𝑋 ≤ 𝑎} = ∫
ℝ

∫
ℝ

𝕀𝑥≤ 𝑎−𝑦
𝜎

𝑝𝑋(𝑥)d𝑥d𝑃𝑌(𝑦)
= ∫

(−∞,𝑎)
∫
ℝ

𝕀𝑥≤ 𝑎−𝑦
𝜎

𝑝𝑋(𝑥)d𝑥d𝑃𝑌(𝑦)
+ ∫

ℝ
𝕀𝑥≤ 𝑎−𝑎

𝜎
𝑝𝑋(𝑥)d𝑥𝑃𝑌{𝑎}

+ ∫
(𝑎,∞)

∫
ℝ

𝕀𝑥≤ 𝑎−𝑦
𝜎

𝑝𝑋(𝑥)d𝑥d𝑃𝑌(𝑦)

By monotone convergence, the first and third integrals converge respectively to
𝑃𝑌(−∞, 𝑎) and 0 while the second term equals 𝛼𝑃𝑌{𝑎}.

Injectivity Theorem and inversion formula

The characteristic function maps probability measures to ℂ-valued functions. The main
result of this section is that characteristic functions/Fourier transforms define is an injective
operator on the set of Probability measures on the real line.

Theorem 12.4. If two probability distribution 𝑃 and 𝑄 have the same characteristic

function, they are equal.

The injectivity property follows from an explicit inversion recipe. The characteristic
function allows us to recover the cumulative distribution function at all its continuity points
(just as the Laplace transform did). Again, as continuity points of cumulative distribution
functions are dense on ℝ, this is enough.

Proposition 12.8. Let 𝑋 ∼ 𝐹 and 𝑍 ∼ 𝒩(0, 1) be independent. Then:

� the distribution of 𝑋 + 𝜎𝑍 has characteristic function

̂𝐹𝜎(𝑡) = Φ̂(𝑡𝜎) × ̂𝐹 (𝑡) = e− 𝑡2𝜎2
2 ̂𝐹 (𝑡)

� the distribution of 𝑋 + 𝜎𝑍 is absolutely continuous with respect to Lebesgue

measure
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� a version of the density of the distribution of 𝑋 + 𝜎𝑍 is given by

𝑦 ↦ 1
2𝜋

∫
ℝ
e− 𝑡2𝜎2

2 ̂𝐹 (𝑡)e−𝑖𝑡𝑦d𝑡 = 1
2𝜋

∫
ℝ

̂𝐹𝜎(𝑡)e−𝑖𝑡𝑦d𝑡 .

Exercise 12.7. Why can we take for granted the existence of a probability space with
two independent random variables 𝑋, 𝑍 distributed as above?

The proposition states that a density of the distribution of 𝑋 + 𝜎𝑍 can be recovered
from the characteristic function of the distribution of 𝑋 + 𝜎𝑍 by the Fourier inversion
formula for functions with integrable Fourier transforms.

Proof. The fact that for any𝜎 > 0, the distribution of𝑌 = 𝑋+𝜎𝑍 is absolutely continuous
with respect to Lebesgue measure comes from Proposition 12.6.

A density of the distribution of 𝑋 + 𝜎𝑍 is given by

∫
ℝ

1
𝜎

𝜙(𝑦 − 𝑥
𝜎

)d𝐹(𝑥)

The characteristic function of 𝑋 + 𝜎𝑍 at 𝑡 is e− 𝑡2𝜎2
2 ̂𝐹 (𝑡).

ℙ{𝑋 + 𝜎𝑍 ≤ 𝑢} = ∫𝑢
−∞

∫
ℝ

1
𝜎𝜙(𝑦−𝑥

𝜎 )d𝐹(𝑥)d𝑦

= ∫𝑢
−∞

∫
ℝ

1
𝜎 ( 1

2𝜋 ∫
ℝ
e− 𝑡2

2 e−𝑖𝑡 𝑦−𝑥
𝜎 d𝑡) d𝐹(𝑥)d𝑦

= ∫𝑢
−∞

(∫
ℝ

1
𝜎

1
2𝜋e

− 𝑡2
2 e− 𝑖𝑡𝑦

𝜎 (∫
ℝ
e 𝑖𝑡𝑥

𝜎 d𝐹(𝑥)) d𝑡) d𝑦

= ∫𝑢
−∞

(∫
ℝ

1
𝜎

1
2𝜋e

− 𝑡2
2 e− 𝑖𝑡𝑦

𝜎 ̂𝐹 (𝑡/𝜎)d𝑡) d𝑦

= ∫𝑢
−∞

( 1
2𝜋 ∫

ℝ
e− 𝑡2𝜎2

2 e−𝑖𝑡𝑦 ̂𝐹 (𝑡)d𝑡) d𝑦

where

• first equality comes from the Tonelli-Fubini Theorem
• second eqality comes from the integral representation for the Gaussian density
• third equality comes from Tonelli-Fubini Theorem again
• last equality follows by change of variable in the inner integral.

The quantity ( 1
2𝜋 ∫

ℝ
e− 𝑡2𝜎2

2 e−𝑖𝑡𝑦 ̂𝐹 (𝑡)d𝑡) is a version of the density of the distribution
of 𝑌 = 𝑋 + 𝜎𝑍 (why?). Note that it is obtained from the same inversion formula that
readily worked for the Gaussian density.

Now we have to show that an inversion formula works for all probability distributions,
not only for the smooth probability distributions obtained by adding Gaussian noise. We
shall check that we can recover the distribution function from the Fourier transform.
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Theorem 12.5. Let 𝑋 be distributed according to 𝑃, with cumulative distribution

function 𝐹 and characteristic function ̂𝐹.
Then:

lim
𝜎↓0

∫
𝑢

−∞
( 1

2𝜋
∫

ℝ
e−𝑖𝑡𝑦e− 𝑡2𝜎2

2 ̂𝐹 (𝑡)d𝑡) d𝑦 = 𝐹(𝑢−) + 1
2

𝑃{𝑢}

where

𝐹(𝑢−) = lim
𝑣↑𝑢

𝐹(𝑣) = 𝑃(−∞, 𝑢) .

Proof. The proof consists in combining Proposition 12.7 and Proposition 12.8.

Note that Theorem 12.5 does not deliver directly the distribution function 𝐹. Indeed,
if 𝐹 is not continuous, 𝑢 ↦ ̃𝐹(𝑢) = 𝐹(𝑢−) + 1

2𝑃{𝑢}, is not a distribution function.
But the right-continuous modification of ̃𝐹: 𝑢 ↦ lim𝑣↓𝑢 ̃𝐹 (𝑣) coincides with 𝐹. We have
established Theorem 12.4).

When the distribution function is absolutely continuous, Fourier inversion is simpler.

Theorem 12.6. Let 𝑋 be distributed according to 𝑃, with cumulative distribution

function 𝐹 and characteristic function ̂𝐹. Assume that ̂𝐹 is integrable (with respect

to Lebesgue measure). Then:

� 𝑃 is absolutely continuous with respect to Lebesgue measure;

� 𝑦 ↦ 1
2𝜋 ∫

ℝ
̂𝐹 (𝑡)e−𝑖𝑡𝑦d𝑡 is a uniformly continuous version of the density of 𝑃.

Proof. Let 𝑋 be distributed according to 𝑃 with cumulative distribution function 𝐹 and
characteristic function ̂𝐹. Let 𝑍 be independent from 𝑋 and 𝒩(0, 1). Let 𝑥 be a continuity
point of 𝐹.

lim
𝜎↓0

𝑃{𝑋 + 𝜎𝑍 ≤ 𝑥} = 𝐹(𝑥)

lim𝜎↓0 𝑃{𝑋 + 𝜎𝑍 ≤ 𝑥} = lim𝜎↓0 ∫𝑥
−∞

( 1
2𝜋 ∫

ℝ
e− 𝑡2𝜎2

2 e−𝑖𝑡𝑦 ̂𝐹 (𝑡)d𝑡) d𝑦

= ∫𝑥
−∞

1
2𝜋 ∫

ℝ
lim𝜎↓0 e− 𝑡2𝜎2

2 e−𝑖𝑡𝑦 ̂𝐹 (𝑡)d𝑡d𝑦
= ∫𝑥

−∞
1

2𝜋 ∫
ℝ
e−𝑖𝑡𝑦 ̂𝐹 (𝑡)d𝑡d𝑦

where interversion of limit and integration is justified by dominated convergence.

We close this section by an alternative inversion formula.

Theorem 12.7 (Inversion formula). Let 𝑃 be a probability distribution over ℝ with
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cumulative distribution function 𝐹, then

lim
𝑇 →∞

1
2𝜋

∫
𝑇

−𝑇

e−𝑖𝑡𝑎 − e−𝑖𝑡𝑏

𝑖𝑡
̂𝐹 (𝑡)d𝑡 = 𝐹(𝑏−) − 𝐹(𝑎) + 1

2
(𝑃{𝑏} + 𝑃{𝑎}) .

Theproof ofTheorem 12.7) canbe found in textbooks like (Durrett, 2010) or (Billingsley,
2012).

Corollary 12.4. Let ̂𝐹 denote the characteristic function of the probability distribution

𝑃, if ̂𝐹 (𝑡) = e− 𝑡2
2 , then 𝑃 is the standard univariate Gaussian distribution (𝒩(0, 1)).

Corollary 12.5. Let ̂𝐹 denote the characteristic function of probability distribution 𝑃,
if ̂𝐹 (𝑡) = e𝑖𝜇𝑡− 𝜎2𝑡2

2 , then 𝑃 is the Gaussian distribution ( 𝒩(𝜇, 𝜎2) ).

Another important byproduct of the proof of injectivity of the characteristic function
is Stein’s identity, an important property of the standard Gaussian distribution.

Theorem 12.8 (Stein’s identity). Let 𝑋 ∼ 𝒩(0, 1), and 𝑔 be a differentiable function

such that 𝔼|𝑔′(𝑋)| < ∞, then

𝔼[𝑔′(𝑋)] = 𝔼[𝑋𝑔(𝑋)] .

Conversely, if 𝑋 is a random variable such that

𝔼[𝑔′(𝑋)] = 𝔼[𝑋𝑔(𝑋)]

holds for any differentiable funtion 𝑔 such that 𝑔′ is integrable, then 𝑋 ∼ 𝒩(0, 1).

Proof. The direct part follows by integration by parts.
To check the converse, note that if 𝑋 satisfies the identity in the Theorem, then for all

𝑡 ∈ ℝ, the functions 𝑡 ↦ 𝔼 cos(𝑡𝑋) and 𝑡 ↦ 𝔼 sin(𝑡𝑋) satisfy the differential equation
𝑔′(𝑡) = 𝑡𝑔(𝑡) with conditions 𝔼 cos(0𝑋) = 1 and 𝔼 sin(0𝑋) = 0. This entails 𝔼e𝑖𝑡𝑋 =
exp( − 𝑡2

2 ), that is 𝑋 ∼ 𝒩(0, 1)

Differentiability and integrability

Differentiability of the Fourier transform at 0 and integrability are intimately related.

Theorem 12.9. If 𝑋 is 𝑝-integrable for some 𝑝 ∈ ℕ then the Fourier transform of the

distribution of 𝑋 is 𝑝-times differentiable at 0 and the 𝑝th derivative equals 𝑖𝑘𝔼𝑋𝑘.

Proof. The proof relies on a Taylor expansion with remainder of 𝑥 ↦ e𝑖𝑥 at 𝑥 = 0:
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e𝑖𝑥 −
𝑛

∑
𝑘=0

(𝑖𝑥)𝑘

𝑘!
= 𝑖𝑛+1

𝑛!
∫

𝑥

0
(𝑥 − 𝑠)𝑛e𝑖𝑠d𝑠 .

The modulus of the right hand side can be upper-bounded in two different ways.

1
𝑛+!

∣ ∫
𝑥

0
(𝑥 − 𝑠)𝑛e𝑖𝑠d𝑠∣ ≤ |𝑥|𝑛+1

(𝑛 + 1)!

which is good when |𝑥| is small. To handle large values of |𝑥|, integration by parts leads to

𝑖𝑛+1

𝑛!
∫

𝑥

0
(𝑥 − 𝑠)𝑛e𝑖𝑠d𝑠 = 𝑖𝑛

(𝑛 − 1)!
∫

𝑥

0
(𝑥 − 𝑠)𝑛−1 (e𝑖𝑠 − 1) d𝑠 .

The modulus of the right hand side can be upper-bounded by 2|𝑥|𝑛/𝑛!.
Applying this Taylor expansion to 𝑥 = 𝑡𝑋, using the pointwise upper bounds and

taking expectations leads to

∣ ̂𝐹 (𝑡) − ∑𝑛
𝑘=0 𝔼 (𝑖𝑡𝑋)𝑘

𝑘! ∣ ≤ 𝔼[min( |𝑡𝑋|𝑛+1

(𝑛+1)! , 2 |𝑡𝑋|𝑛
𝑛! )]

= |𝑡|𝑛
(𝑛+1)!𝔼[min(|𝑡||𝑋|𝑛+1, 2(𝑛 + 1)|𝑋|𝑛)] .

Note that the right hand side is well defined as soon as 𝔼|𝑋|𝑛 < ∞. Now, by dominated
convergence,

lim
𝑡→0

𝔼[min(|𝑡||𝑋|𝑛+1, 2(𝑛 + 1)|𝑋|𝑛)] = 0

Hence we have established that if 𝔼|𝑋|𝑛 < ∞,

̂𝐹 (𝑡) =
𝑛

∑
𝑘=0

𝑖𝑘𝔼𝑋𝑘 𝑡𝑘

𝑘!
+ 𝑜(|𝑡|𝑛) .

In the other direction, the connection is not as simple: differentiability of the Fourier
transform does not imply integrability. But the following holds.

Theorem 12.10. If the Fourier transform ̂𝐹 of the distribution of 𝑋 satisfies

lim
ℎ↓0

2 − ̂𝐹 (ℎ) − ̂𝐹 (−ℎ)
ℎ2 = 𝜎2 < ∞

then 𝔼𝑋2 = 𝜎2.

Proof. Note that

2 − ̂𝐹 (ℎ) − ̂𝐹 (−ℎ) = 2𝔼[1 − cos(ℎ𝑋)] ,

and using Taylor with remainder formula for cos at 0:
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1 − cos𝑥 = ∫
𝑥

0
cos(𝑠)(𝑥 − 𝑠)d𝑠 = 𝑥2 ∫

1

0
cos(𝑠𝑥)(1 − 𝑠)d𝑠

Note that ∫1
0
cos(𝑠𝑥)(1 − 𝑠)d𝑠 ≥ 0 for all 𝑥 ∈ ℝ.

2𝔼[1−cos(ℎ𝑋)]
ℎ2 = 2

𝔼[ℎ2𝑋2 ∫1
0
cos(𝑠ℎ𝑋)(1−𝑠)d𝑠]

ℎ2

= 2𝔼[𝑋2 ∫1
0
cos(𝑠ℎ𝑋)(1 − 𝑠)d𝑠] .

By Fatou’s Lemma:

𝜎2 = lim
ℎ↓0

2𝔼[𝑋2 ∫
1

0
cos(𝑠ℎ𝑋)(1 − 𝑠)d𝑠] ≥ 2𝔼[ lim inf

ℎ↓0
𝑋2 ∫

1

0
cos(𝑠ℎ𝑋)(1 − 𝑠)d𝑠]

but for all 𝑥 ∈ ℝ, by dominated convergence,

lim inf
ℎ↓0

𝑥2 ∫
1

0
cos(𝑠ℎ𝑥)(1 − 𝑠)d𝑠 = 𝑥2

2
.

Hence
𝜎2 ≥ 𝔼𝑋2 .

The proof is completed by invoking Theorem 12.9).

Another application: understanding Cauchy distribution

Assume 𝑈 is uniformly distributed over ]0, 1[, let the real valued random variable 𝑋 be
defined by

𝑋 = tan(𝜋
2

(2 × 𝑈 − 1)) .

As tan is continuously increasing from −𝜋/2 to 𝜋/2, the cumulative distribution func-
tion of the distribution of 𝑋 is

ℙ{𝑋 ≤ 𝑥} = ℙ {tan (𝜋
2 (2𝑈 − 1)) ≤ 𝑥}

= ℙ {𝑈 ≤ 1
2 + 1

𝜋 arctan(𝑥)}
= 1

2 + 1
𝜋 arctan(𝑥)

for 𝑥 ∈ ℝ.
As arctan has derivative 𝑥 ↦ 1

1+𝑥2 , the cumulative distribution function is absolutely
continuous with density:

1
𝜋

1
1 + 𝑥2

This is the density of the Cauchy distribution.
Note that 𝔼(𝑋)+ = 𝔼(𝑋)− = 𝔼|𝑋| = ∞. The Cauchy distribution is not integrable.
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Now, assume 𝑋1, 𝑋2, , … , 𝑋𝑛 are i.i.d. and Cauchy distributed. Let 𝑍 = ∑𝑛
𝑖=1 𝑋𝑖/𝑛.

How is 𝑍 distributed? We might compute the convolution power of the Cauchy density. It
turns out that starting from the characteristic function is much more simple.

We refrain from computing directly the characteristic function of the Cauchy distribu-
tion. We take a roundabout.

Let 𝑌 be distributed according to Laplace distribution, that is with density 𝑦 ↦
1
2 exp(−|𝑦|) for 𝑦 ∈ ℝ. The random variable 𝑌 is symmetric (𝑌 ∼ −𝑌). Let ̂𝐹𝑌 denote the
characteristic function of (the distribution of) 𝑌.

̂𝐹𝑌(𝑡) = 𝔼e𝑡𝑌

= 𝔼 cos(𝑡𝑌 )
= ∫∞

0
e−𝑦 cos(𝑡𝑦)d𝑦

= [−e−𝑦 cos(𝑡𝑦)]∞0 − 𝑡 ∫∞
0

e−𝑡𝑦 sin(𝑡𝑦)d𝑦
= 1 − 𝑡 ∫∞

0
e−𝑦 sin(𝑡𝑦)d𝑦

= 1 − 𝑡 [−e−𝑦 sin(𝑡𝑦)]∞0 − 𝑡2 ∫∞
0

e−𝑦 cos(𝑡𝑦)d𝑦
= 1 − 𝑡2 ̂𝐹𝑌(𝑡)

where we have performed integration by parts twice.
The characteristic function ̂𝐹𝑌 satisfies

̂𝐹𝑌(𝑡) = 1
1 + 𝑡2 ,

up to 1
𝜋 , this is the density of the Cauchy distribution.

̂𝐹𝑋(𝑡) = 𝔼e𝑖𝑡𝑋

= ∫∞
−∞

1
𝜋

1
1+𝑥2 cos(𝑡𝑥)d𝑥

= 2
𝜋 ∫∞

0
cos(𝑡𝑥) ̂𝐹𝑌(𝑥)d𝑥

= 2 × 1
2𝜋 ∫∞

−∞
e−𝑖𝑡𝑥 ̂𝐹𝑌(𝑥)d𝑥

= 2 × 1
2e

−|𝑡| = e−|𝑡|

where we have used the inversion formula.
Now, the characteristic function of the distribution of 𝑍 is

̂𝐹𝑍(𝑡) = (e− |𝑡|
𝑛 )

𝑛
= ̂𝐹𝑋(𝑡)

which means 𝑍 ∼ 𝑋.
The basic tools of characteristic functions theory allow us to

• compute the characteristic function of the Laplace distribution
• compute the characteristic function of the Cauchy distribution by inversion
• compute the characteristic function of sums of independant Cauchy random vari-
ables

• show that the Cauchy distribution is 1-stable.
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Remark 12.4. The density of the Laplace distribution is not differentiable at 0, this is
reflected in the fact that its Fourier transform (the characteristic function of the Laplace
distribution) is not integrable.

Conversely the lack of integrability of the Cauchy distribution is reflected in the non-
differentiability of its characteristic function at 0.

Exercise 12.8. Check that ∫1
0
cos(𝑠𝑥)(1 − 𝑠)d𝑠 ≥ 0 for all 𝑥 ∈ ℝ.

Hint: Check that 𝑡 ↦ ∫1
0
cos(𝑡𝑤)(1 − 𝑤)d𝑤 is the characteristic function of the tent

distribution which has density (1 − |𝑤|) over [−1, 1]. Check that this characteristic
function is the squared modulus of another characteristic function.

12.4 Bibliographic remarks

Wilf (2005) explores the interplay between combinatorics, algorithm analysis and generating
function theory.

Widder (2015) is a classic reference on Laplace transforms. Laplace transforms play an
important role in Point Process Theory, and Extreme Value Theory, to name a few fields of
application.

The first part of Chapter 9 from Pollard (2002) describes characteristic functions as
Fourier transforms. Properties and applications of characteristic functions are thoroughly
discussed in (Durrett, 2010), (Billingsley, 2012).
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Chapter 13

Quantile functions

So far we have seen several characterizations of probability distributions: cumulative dis-
tribution functions (CDFs), Laplace transforms for distributions supported on [0, ∞),
characteristic functions. The last characterization is praised for its behavior with respect to
sums of independent random variables.

For univariate distributions, a companion to the cumulative distribution function is
the quantile function. It plays a significant role in simulations, statistics and risk theory.

A cumulative distribution function 𝐹 is non-negative, [0, 1]-valued, non-decreasing,
right-continuous, with left-limit at any point. The cumulative distribution function of a
diffuse probability measure is continuous at any point.

13.1 Definition

The quantile function 𝐹 ← is defined as an extended inverse of the cumulative distribution
function 𝐹.

Definition 13.1 (Quantile function). The quantile function 𝐹 ← of random variable
𝑋 distributed according to 𝑃 (with cumulative distribution function 𝐹) is defined as

𝐹 ←(𝑝) = inf{𝑥 ∶ 𝑃{𝑋 ≤ 𝑥} ≥ 𝑝}

= inf{𝑥 ∶ 𝐹(𝑥) ≥ 𝑝} for 𝑝 ∈ (0, 1).

The quantile function is non-decreasing and left-continuous. The interplay between
the quantile and cumulative distribution functions is summarized in the next proposition.

Proposition 13.1. If 𝐹 and 𝐹 ← are the cumulative distribution function and the

quantile function of (the distribution of) 𝑋, the following statements hold for 𝑝 ∈]0, 1[:

1. 𝑝 ≤ 𝐹(𝑥) iff 𝐹 ←(𝑝) ≤ 𝑥.
2. 𝐹 ∘ 𝐹 ←(𝑝) ≥ 𝑝 .
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3. 𝐹 ← ∘ 𝐹(𝑥) ≤ 𝑥 .

4. If 𝐹 is absolutely continuous, then 𝐹 ∘ 𝐹 ←(𝑝) = 𝑝

Proof. According to the definition of 𝐹 ← if 𝐹(𝑥) ≥ 𝑝 then 𝐹 ←(𝑝) ≤ 𝑥.
To prove the converse, it suffices to check that 𝐹 ∘ 𝐹 ←(𝑝) ≥ 𝑝.
Indeed, if 𝑥 ≥ 𝐹 ←(𝑝), as 𝐹 is non-decreasing 𝐹(𝑥) ≥ 𝐹 ∘ 𝐹 ←(𝑝). Si 𝑦 = 𝐹 ←(𝑝), par

definition de 𝑦 = 𝐹 ←(𝑝), il existe une non-increasing sequence (𝑧𝑛)𝑛∈ℕ which converges to
𝑦 such that 𝐹(𝑧𝑛) ≥ 𝑝. Mais as 𝐹 is right-continuous lim𝑛 𝐹(𝑧𝑛) = 𝐹(lim𝑛 𝑧𝑛) = 𝐹(𝑦).
Hence 𝐹(𝑦) ≥ 𝑝.

We just proved 1. and 2.
3.) is an immediate consequence de 1). Let 𝑝 = 𝐹(𝑥). Hence 𝑝 ≤ 𝐹(𝑥), according to

1.) this is equivalent to 𝐹 ←(𝑝) ≤ 𝑥, that is 𝐹 ← ∘ 𝐹(𝑥) ≤ 𝑥.
4.) For every 𝑝 in ]0, 1[, {𝑥 ∶ 𝑝 = 𝐹(𝑥)} is non-empty (Mean value Theorem). Let

𝑦 = inf{𝑥 ∶ 𝑝 = 𝐹(𝑥)} = 𝐹 ←(𝑝). According to 1), 𝐹(𝑦) ≥ 𝑝. Now, if (𝑧𝑛)𝑛∈ℕ is
an increasing sequence converging to 𝑦, for every 𝑛, 𝐹(𝑧𝑛) < 𝑝, and, by left-continuity,
𝐹(𝑦) = 𝐹(lim𝑛 𝑧𝑛) = lim𝑛 𝐹(𝑧𝑛) ≤ 𝑝. Hence 𝐹(𝑦) = 𝑝, that is 𝐹 ∘ 𝐹 ←(𝑝) = 𝑝.

13.2 Quantile functions and stochastic simulation

Proposition 13.2 (Quantile transformation). If 𝑈 is uniformly distributed on (0, 1),
and 𝐹 is a cumulative distribution over ℝ, 𝐹 ←(𝑈) has cumulative distribution 𝐹.

Proof.

𝑃{𝐹 ←(𝑈) ≤ 𝑥} = 𝑃{𝑈 ≤ 𝐹(𝑥)}
= 𝐹(𝑥) .

Remark 13.1. The quantile transformation works whatever the continuity properties of 𝐹.

The quantile transformation has many applications. It can be used to show stochastic
domination properties.

Example 13.1. In Figures 13.1 up to Figure 13.4, we illustrate quantile functions for discrete
(binomial) distributions and for distributions that are neither discrete nor continuous. The
quantile function of a discrete distribution is step function that jumps at the cumulative
probability of every possible outcome. If a probability distribution is a mixture of a discrete
distribution and a continuous distribution, the quantile function jumps at the cumulative
probability of every possible outcome of the discrete component.

Let us conclude this section with an important observation. concerning the behavior
of 𝐹(𝑋) when 𝑋 ∼ 𝑃 with cumulative distribution function 𝐹.
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Figure 13.2: Quantile functions max(𝑋, 𝜏) where 𝑋 ∼ 𝒩(0, 1) for 𝜏 ∈ {0, 2}. Let
Φ← denote the quantile function of 𝒩(0, 1). The quantile function of max(𝑋, 𝜏) is
𝕀(0,Φ(𝜏)](𝑝) × 𝜏 + Φ←(𝑝) × 𝕀(Φ(𝜏),1)(𝑝) = Φ←(𝑝 ∨ Φ(𝜏)). The two distributions are neither
absolutely continuous nor discrete.
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Figure 13.3: Cumulative distribution functions for the probability distributions illustrated
in Figure 13.2
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Figure 13.4: Representation of 𝐹 ∘ 𝐹 ← for the probability distributions illustrated in
Figures 13.2 and Figure 13.3. The function 𝐹 ∘ 𝐹 ← always lies above the line 𝑦 = 𝑥 (dotted
line) as prescribed in Proposition 13.1. Plateaux that lie strictly above the dotted line are in
correspondence with jumps of the quantile function.
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Corollary 13.1. If 𝑋 ∼ 𝑃 with continuous cumulative distribution function 𝐹, then
𝐹(𝑋) and 1 − 𝐹(𝑋) are uniformly distributed on [0, 1].

Exercise 13.1. Prove Corollary 13.1

13.3 Order statistics

Definition 13.2 (Order statistics).

Proposition 13.3 (Joint density).

Exercise 13.2 (Rényi’s representation).

Exercise 13.3 (Order statistics of a uniform sample).

13.4 Bibliographical remarks
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Chapter 14

Convergences I : almost sure, 𝐿2, 𝐿1,
in Probability

14.1 Motivations

We need to put topological structures in the world of random variables living on some
probability space. As random variables are (measurable) functions, we shall borrow and
adapt the notions used in Analysis: pointwise convergence (Section 14.2)), convergence in
𝐿𝑝, 1 ≤ 𝑝 < ∞ (Section 14.3)).

Finally, we define and investigate convergence in probability. This notion weakens both
𝐿𝑝 and almost sure (pointwise) convergence. Just as 𝐿𝑝 convergences, it can be metrized.

Convergence in probability and almost sure convergence are illustrated by weak and
strong law of large numbers (Sections Section 14.5 and Section 14.6). Laws of large numbers
assert that empirical means converge towards expectations (under mild conditions), they
are the workhorses of statistical learning theory.

In Section 14.7), we look at non-asymptotic counterparts of the weak law of large
numbers. We establish exponential tail bounds for sums of independent random variables
(under stringent integrability assumptions).

14.2 Almost sure convergence

The notion of almost sure convergence mirrors the notion of pointwise convergence in
probabilistic settings.

Recall that a sequence of real-valued functions (𝑓𝑛)𝑛 mapping some space Ω to ℝ
converges pointwise to 𝑓 ∶ Ω → ℝ, if for each 𝜔 ∈ Ω, 𝑓𝑛(𝜔) → 𝑓(𝜔). There is no
uniformity condition.

In the next definition, we assume that random variables are real-valued. The definition
is easily extended to multivariate settings.

141



CHAPTER 14. CONVERGENCES I : ALMOST SURE, 𝐿2, 𝐿1, IN PROBABILITY

Definition 14.1 (Almost sure Convergences). Let (Ω, ℱ, 𝑃) be a probability space, a
sequence (𝑋𝑛)𝑛 of random variables converges almost surely (a.s.) towards a random
variable 𝑋 if the event

𝐸 = {𝜔 ∶ lim
𝑛

𝑋𝑛(𝜔) = 𝑋(𝜔)}

has 𝑃-probability 1.

Almost sure convergence, is (just) pointwise convergence with probability 1. Almost
sure convergence is not tied to integrability. Note that all random variables involved in the
above statements live on the same probability space. Wemaywonder whether we can design
a metric for almost-sure convergence? The answer is no, as for pointwise convergence, in
general.

14.3 Convergence in 𝐿𝑝

In this section, we consider random variables that satisfy integrability assumptions. The
scope of 𝐿𝑝 convergences is narrower than the scope of 𝐿𝑝 convergences.

We already introduced 𝐿𝑝 convergences in Lesson Chapter 3. We recall it for the sake of
readibility.

Definition 14.2. For 𝑝 ∈ [1, ∞), 𝐿𝑝 is the set of random variables over (Ω, ℱ, 𝑃)
that satisfy 𝔼|𝑋|𝑝 < ∞. The 𝑝-pseudo-norm is defined by ‖𝑋‖𝑝 = (𝔼|𝑋|𝑝)1/𝑝.
Convergence in 𝐿𝑝 means convergence for this pseudo-norm.

Recall that 𝐿𝑝 spaces are nested (by Holder’s inequality) and complete.

Proposition 14.1. Convergence in 𝐿𝑞, 𝑞 ≥ 1 implies convergence in 𝐿𝑝, 1 ≤ 𝑝 ≤ 𝑞.

Almost sure convergence is not tied to integrability. We cannot ask whether almost sure
convergence implies𝐿𝑝 convergence. Butwe can askwhether𝐿𝑝 convergence implies almost
sure convergence. The next statement is a by-product of the proof of the completeness of
𝐿𝑝 spaces, see Section 4.7).

Theorem 14.1. Convergence in 𝐿𝑝 implies almost sure convergence along a subse-
quence.

A counter-example given in Section 4.7) shows that convergence in 𝐿𝑝 does not imply
almost-sure convergence.
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14.4 Convergence in probability

If we denote by 𝐿0 = 𝐿0(Ω, ℱ, 𝑃) the set of real-valued random variables, the notion of
convergence in probability is relevant to all sequences in 𝐿0 like almost sure convergence.
And like convergence in 𝐿𝑝, 𝑝 ≥ 1, convergence in probability can be metrized.

Definition 14.3. Let (Ω, ℱ, 𝑃) be a probability space.
A sequence (𝑋𝑛)𝑛 of random variables converges in probability towards a random
variable 𝑋 if for any 𝜖 > 0

lim
𝑛

𝑃{|𝑋𝑛 − 𝑋| ≥ 𝜖} = 0 .

Proposition 14.2. Convergence in 𝐿𝑝, 𝑝 ≥ 1 implies convergence in probability.

This is an immediate consequence of Markov’s inequality.

Proposition 14.3 (A criterion for convergence in probability). The sequence (𝑋𝑛)𝑛
converges in probability towards 𝑋 iff

lim
𝑛

𝔼[1 ∧ |𝑋𝑛 − 𝑋|] = 0

Proof. Assuming convergence in probability,

𝔼[1 ∧ |𝑋𝑛 − 𝑋|] ≤ 𝔼[(1 ∧ |𝑋𝑛 − 𝑋|)𝕀|𝑋−𝑋𝑛|≥𝜖] + 𝔼[(1 ∧ |𝑋𝑛 − 𝑋|)𝕀|𝑋−𝑋𝑛|<𝜖]

≤ 𝑃{|𝑋 − 𝑋𝑛| ≥ 𝜖} + 𝜖

the limit of the right-hand side is not larger than 𝜖. As we can take 𝜖 arbitrarily small, this
entails that the limit of the left-hand side is zero.

Conversely, for all 0 < 𝜖 < 1

𝑃{|𝑋 − 𝑋𝑛| ≥ 𝜖} ≤ 1
𝜖 𝔼[1 ∧ |𝑋 − 𝑋𝑛|] .

Hence lim𝑛 𝔼[1 ∧ |𝑋𝑛 − 𝑋|] = 0 entails lim𝑛 𝑃{|𝑋 − 𝑋𝑛| ≥ 𝜖} = 0. As this holds for all

𝜖 > 0, lim𝑛 𝔼[1 ∧ |𝑋𝑛 − 𝑋|] = 0 entails convergence in Probability.

Proposition 14.4. Almost sure convergence implies convergence in probability.

Proof. Assume 𝑋𝑛 → 𝑋 a.s., that is |𝑋𝑛 − 𝑋| → 0. Then by dominated convergence,

lim
𝑛

𝔼[|𝑋𝑛 − 𝑋| ∧ 1] = 0

which entails convergence in probability of (𝑋𝑛)𝑛 towards 𝑋.

Now, we come to a metric which fits perfectly with convergence in probability.
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Definition 14.4 (Ky-Fan distance). The Ky-Fan distance is defined as

dKF(𝑋, 𝑌 ) = inf
𝜖≥0

𝑃{|𝑋 − 𝑌 | > 𝜖} ≤ 𝜖 .

Note that we have to check that dKF is indeed a distance. This is the content of Proposi-
tion @ref(prp:kyfanprop) below.

Proposition 14.5. In the definition of the Ky-Fan distance, the infimum is attained.

Proof. Let 𝑎 > dKF(𝑋, 𝑌 ) the event 𝐴𝑎 = {|𝑋 − 𝑌 | > 𝑎} has probability smaller than

𝜖. And if 𝜖 < 𝑎 < 𝑏, 𝐴𝑏 ⊆ 𝐴𝑎. By monotone converence, 𝑃( ∩𝑛 𝐴𝜖+1/𝑛) = lim𝑛 ↑

𝑃(𝐴𝜖+1/𝑛) = 𝜖.

Proposition 14.6. Ky-Fan distance satisfies:

1. dKF(𝑋, 𝑌 ) = 0 ⇒ 𝑋 = 𝑌 a.s.

2. dKF(𝑋, 𝑌 ) = dKF(𝑌 , 𝑋)
3. dKF(𝑋, 𝑍) ≤ dKF(𝑋, 𝑌 ) + dKF(𝑌 , 𝑍)

Proof. We check that dKF satisfies the triangle inequality. There exists two events 𝐵 and 𝐶
with respective probabilities dKF(𝑋, 𝑌 ) and dKF(𝑌 , 𝑍) such that

|𝑋(𝜔) − 𝑌 (𝜔)| ≤ dKF(𝑋, 𝑌 ) on 𝐵𝑐

and
|𝑍(𝜔) − 𝑌 (𝜔)| ≤ dKF(𝑍, 𝑌 ) on 𝐶𝑐 .

On 𝐵𝑐 ∩ 𝐶𝑐, by the triangle inequality on ℝ:

|𝑋(𝜔) − 𝑍(𝜔)| ≤ dKF(𝑋, 𝑌 ) + dKF(𝑌 , 𝑍) .

We conclude by observing

𝑃(|𝑋(𝜔) − 𝑍(𝜔)| > dKF(𝑋, 𝑌 ) + dKF(𝑌 , 𝑍)) ≤ 𝑃((𝐵𝑐 ∩ 𝐶𝑐)𝑐)
= 𝑃(𝐵 ∪ 𝐶)
≤ 𝑃(𝐵) + 𝑃(𝐶)
= dKF(𝑋, 𝑌 ) + dKF(𝑌 , 𝑍) .

Proposition 14.7. The two statements are equivalent:

1. (𝑋𝑛)𝑛 converges in probability towards 𝑋
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2. dKF(𝑋𝑛, 𝑋) tends to 0 as 𝑛 tends to infinity.

Exercise 14.1. Check the proposition.

We leave the following questions as exercises:

• Is ℒ0(Ω, ℱ, 𝑃) complete under the Ky-Fan metric?
• Does convergence in probability imply almost sure convergence?
• Does convergence in probability imply convergence in 𝐿𝑝, 𝑝 ≥ 1?

Finally, we state a more gemeral definition of convergence in probability. The notion
can be tailored to random variables that map some universe to some metric space. The
connections with almost-sure convergence and 𝐿𝑝 convergences remain unchanged.

Definition 14.5 (Convergence in probability, multivariate setting). A sequence
(𝑋𝑛)𝑛∈ℕ of ℝ𝑘-valued random variables living on the same probability space
(Ω, ℱ, 𝑃) converges in probability (in ℙ-probability) towards a ℝ𝑘-valued random
variable 𝑋 iff for every 𝜖 > 0

lim
𝑛→∞

ℙ{‖𝑋𝑛 − 𝑋‖ > 𝜖} = 0 .

14.5 Weak law of large numbers

The weak and the strong law of large numbers are concerned with the convergence of em-
pirical means of independent, identically distributed, integrable random variables towards
their common expectation.

Theorem 14.2 (Weak law of large numbers). If 𝑋1, … , 𝑋𝑛, … are independently,

identically distributed, integrable ℝ𝑘-valued random variables over (Ω, ℱ, 𝑃) with
expectation 𝜇 then the sequence (𝑋𝑛) defined by 𝑋𝑛 ∶= 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖 converges in

𝑃-probability towards 𝜇.

Proof. Assume first that 𝔼[(𝑋𝑖 − 𝜇)
2
] = 𝜎2 < ∞. Then, for all 𝜖 > 0, by the Markov-

Chebychev inequality:

𝑃{∣ 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 − 𝜇∣ > 𝜖} ≤
𝔼∣ 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖−𝜇∣

2

𝜖2

=
𝔼[(𝑋𝑖−𝜇)

2

]
𝑛𝜖2

= 𝜎2

𝑛𝜖2
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because the variance of a sum of independent random variables equals the sum of the
variances of the summands.

The right-hand side converges to 0 for all 𝜖 > 0. TheWLLNholds for square-integrable
random variables.

Let us turn to the general case. Without loss of generality, assume all 𝑋𝑛 are centered.
Let 𝜏 > 0 be a truncation threshold (which value will be tuned later). For each 𝑖 ∈ ℕ, 𝑋𝑖 is
decomposed into a sum:

𝑋𝑖 = 𝑋𝜏
𝑖 + 𝑌 𝜏

𝑖

with 𝑋𝜏
𝑖 = 𝕀|𝑋𝑖|≤𝜏𝑋𝑖 and 𝑌 𝜏

𝑖 = 𝕀|𝑋𝑖|>𝜏𝑋𝑖. For every 𝜖 > 0,

{∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖∣ > 𝜖} ⊆ {∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝜏
𝑖 ∣ > 𝜖

2
} ∪ {∣ 1

𝑛

𝑛
∑
𝑖=1

𝑌 𝜏
𝑖 ∣ > 𝜖

2
} .

Invoking the union bound, Markov’s inequality (twice), the boundedness of the vari-
ances of the 𝑋𝜏

𝑖 ’s leads to:

𝑃{∣ 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 − 𝜇∣ > 𝜖} ≤ 𝑃{∣ 1
𝑛 ∑𝑛

𝑖=1 𝑋𝜏
𝑖 ∣ > 𝜖

2} + 𝑃{∣ 1
𝑛 ∑𝑛

𝑖=1 𝑌 𝜏
𝑖 ∣ > 𝜖

2}

≤ 4
𝔼∣ 1

𝑛 ∑𝑛
𝑖=1 𝑋𝜏

𝑖 ∣
2

𝜖2 + 2
𝔼∣ 1

𝑛 ∑𝑛
𝑖=1 𝑌 𝜏

𝑖 ∣
𝜖

≤ 4𝜏2

𝑛𝜖2 + 2
𝔼∣ 1

𝑛 ∑𝑛
𝑖=1 𝑌 𝜏

𝑖 ∣
𝜖

≤ 4𝜏2

𝑛𝜖2 + 2 1
𝑛 ∑𝑛

𝑖=1

𝔼∣𝑌 𝜏
𝑖 ∣

𝜖

≤ 4𝜏2

𝑛𝜖2 + 2
𝔼∣𝑌 𝜏

1 ∣
𝜖 .

Taking 𝑛 to infinity leads to

lim sup
𝑛

𝑃{∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 − 𝜇∣ > 𝜖} ≤ 2
𝔼∣𝑌 𝜏

1 ∣

𝜖
.

Now as 𝜏 ↑ ∞ |𝑌 𝜏
1 | ↓ 0 while |𝑌 𝜏

1 | ≤ |𝑋1|, dominated convergence (here a special case

of monotone convergence) warrants that lim𝜏↑∞

𝔼∣𝑌 𝜏
1 ∣

𝜖 = 0.
This completes the proof of the WLLN.

14.6 Strong law of large numbers

Infinite product space endowed with cylinders 𝜎-algebra, and infinite product distribution.

Theorem 14.3 (Strong law of large numbers, direct part). If 𝑋1, … , 𝑋𝑛, … are in-

dependently, identically distributed, integrable ℝ-valued random variables over
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(Ω, ℱ, 𝑃) with expectation 𝜇 then 𝑃-a.s.

lim
𝑛→∞

𝑋𝑛 = 𝜇 with 𝑋𝑛 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖.

Recall

Lemma 14.1 (Borel-Cantelli I). Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events from probability space

(Ω, ℱ, 𝑃).
If

∑
𝑛

𝑃(𝐴𝑛) < ∞

then:

with probability 1, only finitely many events among 𝐴1, 𝐴2, … , 𝐴𝑛 occur:

𝑃{𝜔 ∶ ∑
𝑛

𝕀𝐴𝑛
(𝜔) < ∞} = 1 .

Proof. An outcome 𝜔 belongs to infinitely many events 𝐴𝑘, iff 𝜔 ∈ ∩𝑛 ∪𝑘≥𝑛 𝐴𝑘. By
monotone convergence,

𝑃{𝜔 ∶ 𝜔 belongs to infinitely many events 𝐴𝑘} = 𝑃{ ∩𝑛 ∪𝑘≥𝑛𝐴𝑘}

= lim𝑛 ↓ 𝑃{ ∪𝑘≥𝑛 𝐴𝑘}

≤ lim𝑛 ↓ ∑𝑘≥𝑛 𝑃{𝐴𝑘}
= 0 .

Proof of SLLN (direct part). The event {𝜔 ∶ lim𝑛 ∑𝑛
𝑖=1

𝑋𝑖
𝑛 = 𝜇} belongs to the tail 𝜎-

algebra. To check the Strong Law of Large Numbers, it suffices to check that this event has
non-zero probability.

Moreover, using the usual decomposition 𝑋 = (𝑋)+ − (𝑋)− where (𝑋)+ and (𝑋)−
are the positive and negative parts of 𝑋, we observe that we can assume without loss of
generality that 𝑋𝑖’s are non-negative.

Recall the definition of truncated variables 𝑋𝑖
𝑖 = 𝕀𝑋𝑖≤𝑖𝑋𝑖 for 𝑖 ∈ ℕ. Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝑇𝑛 = ∑𝑛

𝑖=1 𝑋𝑖
𝑖 .

The difference 𝑆𝑛 − 𝑇𝑛 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋𝑖

𝑖) is a sum of non-negative random variables.
As

𝑃{𝑋𝑖 − 𝑋𝑖
𝑖 > 0} = 𝑃{𝑋𝑖 > 𝑖} = 𝑃{𝑋1 > 𝑖} ,

thanks to 𝔼𝑋1 < ∞,
∑
𝑖∈ℕ

𝑃{𝑋𝑖 − 𝑋𝑖
𝑖 > 0} < ∞ .

m1 isifar 147 ma1ay010



CHAPTER 14. CONVERGENCES I : ALMOST SURE, 𝐿2, 𝐿1, IN PROBABILITY

By the first Borel-Cantelli Lemma, this implies that almost surely, only finitely many
events {𝑋𝑖 − 𝑋𝑖

𝑖 > 0} are realized. Hence almost surely, 𝑇𝑛 and 𝑆𝑛 differ by at most a
bounded number of summands, and lim𝑛 ↑ (𝑆𝑛 − 𝑇𝑛) is finite.

Now
lim

𝑛
↑ 𝔼𝑇𝑛

𝑛
= 𝔼𝑋1 .

We shall first check that 𝑇𝑛(𝑘)/𝑛(𝑘) converges almost surely towards 𝔼𝑋1 for some
(almost) geometrically increasing subsequence (𝑛(𝑘))𝑘∈ℕ.

Fix 𝛼 > 1 and let 𝑛(𝑘) = ⌊𝛼𝑘⌋. If for all 𝜖 > 0, almost surely, only finitely many events

{∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣ ≥ 𝑛(𝑘) > 𝜖}

occur, then ∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣/𝑛(𝑘) converges almost surely to 0 and thus 𝑇𝑛(𝑘)/𝑛(𝑘) con-
verges almost surely to 𝔼𝑋1.

Let
Θ = ∑

𝑘∈ℕ
𝑃{∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣ ≥ 𝑛(𝑘) > 𝜖} .

Thanks to truncation, each 𝑇𝑛(𝑘) is square-integrable. By Chebychev’s inequality:

𝑃{∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣ ≥ 𝑛(𝑘) > 𝜖} ≤
var(𝑇𝑛(𝑘))
𝜖2𝑛(𝑘)2 .

As 𝑋𝑖
𝑖 ’s are independent,

var(𝑇𝑛(𝑘)) = ∑𝑖≤𝑛(𝑘) var(𝑋
𝑖
𝑖)

≤ ∑𝑖≤𝑛(𝑘) 𝔼[(𝑋𝑖
𝑖)2]

= ∑𝑖≤𝑛(𝑘) ∫∞
0

2𝑡𝑃{𝑋𝑖
𝑖 > 𝑡}d𝑡

≤ ∑𝑖≤𝑛(𝑘) ∫𝑖
0

2𝑡𝑃{𝑋1 > 𝑡}d𝑡 .

Θ ≤ ∑𝑘∈ℕ
1

𝜖2𝑛(𝑘)2 ∑𝑖≤𝑛(𝑘) ∫𝑖
0

2𝑡𝑃{𝑋1 > 𝑡}d𝑡
= 1

𝜖2 ∑𝑖∈ℕ ∫𝑖
0

2𝑡𝑃{𝑋1 > 𝑡}d𝑡 ∑𝑘∶𝑛(𝑘)≥𝑖
1

𝑛(𝑘)2 .

Thanks to the fact that 𝛼𝑘 > 1 for 𝑘 ≥ 1, the following holds:

∑
𝑘∶𝑛(𝑘)≥𝑖

1
𝑛(𝑘)2 = ∑

𝑘∶⌊𝛼𝑘⌋≥𝑖

1
⌊𝛼𝑘⌋2 ≤ 4

𝑖2
𝛼2

𝛼2 − 1
.

Θ ≤ 4𝛼2

𝜖2(𝛼2−1) ∑𝑖∈ℕ
1
𝑖2 ∫𝑖

0
2𝑡𝑃{𝑋1 > 𝑡}d𝑡

≤ 4𝛼2

𝜖2(𝛼2−1) ∑𝑖∈ℕ
1
𝑖2 ∑𝑗<𝑖 ∫𝑗+1

𝑗
2𝑃{𝑋1 > 𝑡}d𝑡

≤ 4𝛼2

𝜖2(𝛼2−1) ∑∞
𝑗=0 ∫𝑗+1

𝑗
2𝑡𝑃{𝑋1 > 𝑡}d𝑡 ∑𝑖>𝑗

1
𝑖2

≤ 4𝛼2

𝜖2(𝛼2−1) ∑∞
𝑗=0 ∫𝑗+1

𝑗
2𝑡𝑃{𝑋1 > 𝑡}d𝑡 2

𝑗∨1

≤ 8 4𝛼2

𝜖2(𝛼2−1) ∑∞
𝑗=0 ∫𝑗+1

𝑗
𝑃{𝑋1 > 𝑡}d𝑡

≤ 8 4𝛼2

𝜖2(𝛼2−1)𝔼𝑋1

< ∞ .
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By the first Borell-Cantelli Lemma, with probability 1, only finitely many events

{∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣ ≥ 𝑛(𝑘) > 𝜖}

occur. As this holds for each 𝜖 > 0, it holds simultaneously for all 𝜖 = 1/𝑛, which implies
that ∣𝑇𝑛(𝑘) − 𝔼𝑇𝑛(𝑘)∣/𝑛(𝑘) converges almost surely to 0. This also implies that 𝑆𝑛(𝑘)/𝑛(𝑘)
converges almost surely to 𝔼𝑋1.

To complete the proof, we need to check that this holds for 𝑆𝑛/𝑛.
If 𝑛(𝑘) ≤ 𝑛 < 𝑛(𝑘 + 1), as (𝑆𝑛)𝑛 is non-decreasing,

𝑛(𝑘)
𝑛(𝑘 + 1)

𝑆𝑛(𝑘)

𝑛(𝑘)
≤ 𝑆𝑛

𝑛
≤ 𝑛(𝑘 + 1)

𝑛(𝑘)
𝑆𝑛(𝑘+1)

𝑛(𝑘 + 1)

with
1
𝛼

(1 − 1
𝛼𝑘 ) ≤ 𝑛(𝑘 + 1)

𝑛(𝑘)
≤ 𝛼 (1 + 1

⌊𝛼𝑘⌋
) .

Taking 𝑘 to infinty, almost surely

1
𝛼

𝔼𝑋1 ≤ lim inf
𝑛

𝑆𝑛
𝑛

≤ lim sup
𝑛

𝑆𝑛
𝑛

≤ 𝛼𝔼𝑋1 .

Finally, we may choose 𝛼 arbitrarily close to 1, to establish the desired result.

Remark 14.1. In the statement of theTheorem,we can replace the independence assumption
by a pairwise independence assumption.

Theorem 14.4) shows that, under independence assumption, the conditions in Theo-
rem 14.3) are tight. Before proceeding to the proof of Theorem 14.4), we state and prove
the second Borel-Cantelli Lemma.

Lemma 14.2 (Borel-Cantelli II). Let 𝐴1, 𝐴2, … , 𝐴𝑛 be independent events from

probability space (Ω, ℱ, 𝑃).
If

∑
𝑛

𝑃(𝐴𝑛) = ∞

then

with probability 1, infinitely many events among 𝐴1, 𝐴2, … , 𝐴𝑛 occur:

𝑃{𝜔 ∶ ∑
𝑛

𝕀𝐴𝑛
(𝜔) = ∞} = 1 .
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Proof. An outcome 𝜔 does not belong to infinitely many events 𝐴𝑘, iff 𝜔 ∈ ∪𝑛 ∩𝑘≥𝑛 𝐴𝑐
𝑘.

By monotone convergence,

𝑃{𝜔 ∶ 𝜔 does not belong to infinitely many events 𝐴𝑘} = 𝑃{𝜔 ∈ ∪𝑛 ∩𝑘≥𝑛 𝐴𝑐
𝑘}

= lim𝑛 ↑ 𝑃{ ∩𝑘≥𝑛 𝐴𝑐
𝑘}

= lim𝑛 ↑ lim𝑚↑∞ ↓ 𝑃{ ∩𝑚
𝑘=𝑛 𝐴𝑐

𝑘}

= lim𝑛 ↑ lim𝑚↑∞ ↓ ∏𝑚
𝑘=𝑛 (1 − 𝑃(𝐴𝑘)})

= lim𝑛 ↑ ∏∞
𝑘=𝑛 (1 − 𝑃(𝐴𝑘))

= lim𝑛 ↑ exp( − ∑∞
𝑘=𝑛 𝑃(𝐴𝑘))

= lim𝑛 ↑ 0
= 0 .

Theorem 14.4 (Strong law of large numbers, converse part). Let 𝑋1, … , 𝑋𝑛, … be in-

dependently, identically distributed ℝ-valued random variables over some (Ω, ℱ, 𝑃).
If for some finite constant 𝜇,

lim
𝑛→∞

∑
𝑖≤𝑛

𝑋𝑖/𝑛 = 𝜇 almost surely,

then all 𝑋𝑖 are integrable and 𝔼𝑋𝑖 = 𝜇.

We may assume that 𝑋𝑖’s are non-negative random variables.

Proof. In order to check that the 𝑋𝑖’s are integrable, it suffices to show that
∞

∑
𝑛=0

𝑃{𝑋1 > 𝑛} =
∞

∑
𝑛=0

𝑃{𝑋𝑛 > 𝑛} < ∞.

Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖. Observe that

{𝜔 ∶ 𝑋𝑛+1(𝜔) > 𝑛 + 1} = {𝜔 ∶ 𝑆𝑛+1(𝜔) − 𝑆𝑛(𝜔) > 𝑛 + 1}

= {𝜔 ∶ 𝑆𝑛+1(𝜔)
𝑛+1 − 𝑆𝑛(𝜔)

𝑛 > 1 + 𝑆𝑛(𝜔)
𝑛(𝑛+1)} .

Assume by contradiction that the 𝑋𝑖’s are not integrable. Then by the second Borel-Cantelli
Lemma, with probability 1, infinitely many events

{𝜔 ∶
𝑆𝑛+1
𝑛 + 1

− 𝑆𝑛
𝑛

> 1 + 𝑆𝑛
𝑛(𝑛 + 1)

}

occur. But this cannot happen if 𝑆𝑛/𝑛 converges toward a finite limit.

The law of large numbers is the cornerstone of consistency proofs.
Before shifting to non-exponential inequalities, we point a general result about events

that depend on the limiting behavior of sequences of independent random variables.
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Definition 14.6 (Tail sigma-algebra). Assume 𝑋1, … , 𝑋𝑛, … are random variables.
The tail 𝜎-algebra (or the 𝜎-algebra of tail events) is defined as:

𝒯 = ∩∞
𝑛=𝜎(𝑋𝑛, 𝑋𝑛+1, … ) .

Observe that the event ∑𝑛
𝑖=1 𝑋𝑖/𝑛 converges towards a finite limit belongs to the

tail 𝜎-algebra. The Strong Law of Large Numbers tells us that under integrability and
independence assumptions, this tail event has probability 1. This is no accident. The
0 − 1-law asserts that under independence, tail events have trivial probabilities.

Theorem 14.5 (0-1-Law). Assume 𝑋1, … , 𝑋𝑛, … are independent random variables.

Any event in the tail 𝜎-algebra 𝒯 has probability either 0 or 1.

Proof. It suffices to check that any event 𝐴 ∈ 𝒯 satisfies 𝑃(𝐴)2 = 𝑃(𝐴), or equivalently
that 𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐴) = 𝑃(𝐴) × 𝑃(𝐴), that is 𝐴 is independent of itself.

For any 𝑛, as an event in 𝜎(𝑋𝑛, 𝑋𝑛+1, … ), 𝐴 is independent from any event in
𝜎(𝑋1, … , 𝑋𝑛). But this entails that 𝐴 is independent from any event in ∪𝑛𝜎(𝑋1, … , 𝑋𝑛).

Observe that ∪𝑛𝜎(𝑋1, … , 𝑋𝑛) is a 𝜋-system. Hence, 𝐴 is independent from any event
from the𝜎-algebra generated by∪𝑛𝜎(𝑋1, … , 𝑋𝑛), which happens to beℱ. As𝐴 ∈ 𝒯 ⊂ ℱ,
𝐴 is independent from itself.

Exercise 14.2. Derive the second Borel-Cantelli Lemma as a special case of the 0 − 1-
law.

14.7 Exponential inequalities

Laws of large numbers are asymptotic statements. In applications, in Statistics, in Statistical
Learning Theory, it is often desirable to have guarantees for fixed 𝑛. Exponential inequali-
ties are refinements of Chebychev inequality. Under strong integrability assumptions on
the summands, it is possible and relatively easy to derive sharp tail bounds for sums of
independent random variables.

Hoeffding's Lemma

Let 𝑌 be a random variable taking values in a bounded interval [𝑎, 𝑏] and let 𝜓𝑌(𝜆) =
log𝔼𝑒𝜆(𝑌 −𝔼𝑌 ). Then

var(𝑌 ) ≤ (𝑏 − 𝑎)2

4
and 𝜓𝑌(𝜆) ≤ 1

2
(𝑏 − 𝑎)2

4
.

Proof. The upper bound on the variance of 𝑌 has been established in Section 4.4).
Now let 𝑃 denote the distribution of 𝑌 and let 𝑃𝜆 be the probability distribution with

density
𝑥 → 𝑒−𝜓𝑌(𝜆)𝑒𝜆(𝑥−𝔼𝑌 )
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with respect to 𝑃.
Since𝑃𝜆 is concentrated on [𝑎, 𝑏] (𝑃𝜆([𝑎, 𝑏]) = 𝑃([𝑎, 𝑏]) = 1), the variance of a random

variable 𝑍 with distribution 𝑃𝜆 is bounded by (𝑏 − 𝑎)2/4. Note that 𝑃0 = 𝑃.
Dominated convergence arguments allow to compute the derivatives of 𝜓𝑌(𝜆). Namely

𝜓′
𝑌(𝜆) =

𝔼[(𝑌 − 𝔼𝑌 )𝑒𝜆(𝑌 −𝔼𝑌 )]

𝔼𝑒𝜆(𝑌 −𝔼𝑌 ) = 𝔼𝑃𝜆
𝑍 .

and

𝜓′′
𝑌 (𝜆) =

𝔼[(𝑌 − 𝔼𝑌 )2𝑒𝜆(𝑌 −𝔼𝑌 )]

𝔼𝑒𝜆(𝑌 −𝔼𝑌 ) − (
𝔼[(𝑌 − 𝔼𝑌 )𝑒𝜆(𝑌 −𝔼𝑌 )]

𝔼𝑒𝜆(𝑌 −𝔼𝑌 ) )
2

= var𝑃𝜆
(𝑍) .

Hence, thanks to the variance upper bound:

𝜓′′
𝑌 (𝜆) ≤ (𝑏−𝑎)2

4 .

Note that 𝜓𝑌(0) = 𝜓′
𝑌(0) = 0, and by Taylor’s theorem, for some 𝜃 ∈ [0, 𝜆],

𝜓𝑌(𝜆) = 𝜓𝑌(0) + 𝜆𝜓′
𝑌(0) + 𝜆2

2
𝜓″

𝑌(𝜃) ≤ 𝜆2(𝑏 − 𝑎)2

8
.

The upper bound on the variance is sharp in the special case of a Rademacher random
variable 𝑋 whose distribution is defined by 𝑃{𝑋 = −1} = 𝑃{𝑋 = 1} = 1/2. Then one
may take 𝑎 = −𝑏 = 1 and var(𝑋) = 1 = (𝑏 − 𝑎)2 /4.

We can now build on Hoeffding’s Lemma to derive very practical tail bounds for sums
of bounded independent random variables.

Theorem 14.6 (Hoeffding’s inequality). Let 𝑋1, … , 𝑋𝑛 be independent random

variables such that 𝑋𝑖 takes its values in [𝑎𝑖, 𝑏𝑖] almost surely for all 𝑖 ≤ 𝑛. Let

𝑆 =
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝔼𝑋𝑖) .

Then

var(𝑆) ≤
𝑛

∑
𝑖=1

(𝑏𝑖 − 𝑎𝑖)2

4
.

Let 𝑣 denote the upper bound on the variance. For any 𝜆 ∈ ℝ,

log𝔼e𝜆𝑆 ≤ 𝜆2𝑣
2

.

Then for every 𝑡 > 0,

𝑃 {𝑆 ≥ 𝑡} ≤ exp(− 𝑡2

2𝑣
) .

The proof is based on the so-called Cramer-Chernoff bounding technique and on
Hoeffding’s Lemma.
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Proof. The upper bound on variance follows from var(𝑆) = ∑𝑛
𝑖=1 var(𝑋𝑖) and from the

first part of Hoeffding’s Lemma.
For the upper-bound on log𝔼e𝜆𝑆,

log𝔼e𝜆𝑆 = log𝔼e∑𝑛
𝑖=1 𝜆(𝑋𝑖−𝔼𝑋𝑖)

= log𝔼[ ∏𝑛
𝑖=1 e

𝜆(𝑋𝑖−𝔼𝑋𝑖)]

= log( ∏𝑛
𝑖=1 𝔼[e𝜆(𝑋𝑖−𝔼𝑋𝑖)])

= ∑𝑛
𝑖=1 log𝔼[e𝜆(𝑋𝑖−𝔼𝑋𝑖)]

≤ ∑𝑛
𝑖=1

𝜆2(𝑏𝑖−𝑎𝑖)2

8
= 𝜆2𝑣

2

where the third equality comes from independence of the 𝑋𝑖’s and the inequality follows
from invoking Hoeffding’s Lemma for each summand.

The Cramer-Chernoff technique consists of usingMarkov’s inequality with exponential
moments.

𝑃{𝑆 ≥ 𝑡} ≤ inf𝜆≥0
𝔼e𝜆𝑆

e𝜆𝑡

≤ exp( − sup
𝜆≥0

(𝜆𝑡 − log𝔼e𝜆𝑆))

≤ exp( − sup
𝜆≥0

(𝜆𝑡 − 𝜆2𝑣
2 ))

= e− 𝑡2
2𝑣 .

Hoeffding’s inequality provides interesting tail bounds for binomial random variables
which are sums of independent [0, 1]-valued random variables. However in some cases,
the variance upper bound used in Hoeffding’s inequality is excessively conservative. Think
for example of binomial random variable with parameters 𝑛 and 𝜇/𝑛, the variance upper-
bound obtained from the boundedness assumption is 𝑛 while the true variance is 𝜇. This
motivates the next two exponential inequalities stated in Theorem 14.7) and Theorem 14.8).

Theorem 14.7 (Bennett’s inequality). Let 𝑋1, … , 𝑋𝑛 be independent random vari-

ables with finite variance such that 𝑋𝑖 ≤ 𝑏 for some 𝑏 > 0 almost surely for all 𝑖 ≤ 𝑛.
Let

𝑆 =
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝔼𝑋𝑖)

and 𝑣 = ∑𝑛
𝑖=1 𝔼 [𝑋2

𝑖 ]. Let 𝜙(𝑢) = 𝑒𝑢 − 𝑢 − 1 for 𝑢 ∈ ℝ.
Then, for all 𝜆 > 0,

log𝔼𝑒𝜆𝑆 ≤ 𝑣
𝑏2 𝜙(𝑏𝜆) ,

and for any 𝑡 > 0,

𝑃{𝑆 ≥ 𝑡} ≤ exp(− 𝑣
𝑏2 ℎ (𝑏𝑡

𝑣
))

where ℎ(𝑢) = 𝜙∗(𝑢) = (1 + 𝑢) log(1 + 𝑢) − 𝑢 for 𝑢 > 0.
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Remark 14.2. Bennett’s inequality provides us with improved tail bounds for the binomial
random variable with parameters 𝑛 and 𝜇/𝑛. This binomial random variable is distributed
like the sum 𝑛 independent Bernoulli random variables with parameter 𝜇/𝑛. This fits
in the scope of Bennett’s inequality, we can choose 𝑏 = 1 and 𝑣 = 𝜇. The obtained
upper bound on the logarithmic moment generating function coincides with logarithmic
moment generating function of a centered Poisson random variable with parameter 𝜇, see
Theorem 12.3).

Proof. The proof combines the Cramer-Chernoff technique with an ad hoc upper bound
on log𝔼e𝜆(𝑋𝑖−𝔼𝑋𝑖).

By homogeneity, we may assume 𝑏 = 1.
Note that 𝜙(𝜆)/𝜆2 is non-decreasing over ℝ. For 𝑥 ≤ 1, 𝜆 ≥ 0, 𝜙(𝜆𝑥) ≤ 𝑥2𝜙(𝜆).

log𝔼e𝜆(𝑋𝑖−𝔼𝑋𝑖) = log𝔼e𝜆𝑋𝑖 − 𝜆𝔼𝑋𝑖
≤ 𝔼e𝜆𝑋𝑖 − 1 − 𝜆𝔼𝑋𝑖
= 𝔼𝜙(𝜆𝑋𝑖)
= 𝔼𝑋2

𝑖 𝜙(𝜆) .

Whereas Bennett’s bound works well for Poisson-like random variables, our last bound
is geared towards Gamma-like random variables. It is one of the pillars of statistical learning
theory.

Theorem 14.8 (Bernstein’s inequality). Let 𝑋1, … , 𝑋𝑛 be independent real-valued

random variables. Assume that there exist positive numbers 𝑣 and 𝑐 such that

∑𝑛
𝑖=1 𝔼 [𝑋2

𝑖 ] ≤ 𝑣 and

𝑛
∑
𝑖=1

𝔼 [(𝑋𝑖)
𝑞
+] ≤ 𝑞!

2
𝑣𝑐𝑞−2 for all integers 𝑞 ≥ 3 .

Let 𝑆 = ∑𝑛
𝑖=1 (𝑋𝑖 − 𝔼𝑋𝑖) .

Then for all 𝜆 ∈ (0, 1/𝑐),

log𝔼e𝜆(𝑆−𝔼𝑆) ≤ 𝑣𝜆2

2(1 − 𝑐𝜆)
.

For 𝑡 > 0,
𝑃{𝑆 > 𝑡} ≤ exp( − 𝑣

𝑐2 ℎ1(𝑐𝑡
𝑣

))

with ℎ1(𝑥) = 1 + 𝑥 −
√

1 + 2𝑥.

Proof. The proof combines again the Cramer-Chernoff technique with an ad hoc upper
bound on log𝔼e𝜆(𝑆−𝔼𝑆).

Let again 𝜙(𝑢) = 𝑒𝑢 − 𝑢 − 1 for 𝑢 ∈ ℝ.
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For 𝜆 > 0,
𝜙(𝜆𝑋𝑖) = ∑∞

𝑘=2
𝜆𝑘𝑋𝑘

𝑖
𝜆𝑘

≤ 𝜆2𝑋2
𝑖

2! + ∑∞
𝑘=3

𝜆𝑘(𝑋𝑖)𝑘
+

𝜆𝑘 .

For 𝑐 > 𝜆 > 0,

log𝔼e𝜆𝑆 = ∑𝑛
𝑖=1 log𝔼e𝜆(𝑋𝑖−𝔼𝑋𝑖)

≤ ∑𝑛
𝑖=1 𝔼𝜙(𝜆𝑋𝑖)

≤ 𝜆2 ∑𝑛
𝑖=1 𝔼𝑋2

𝑖
2! + ∑∞

𝑘=3
𝜆𝑘 ∑𝑛

𝑖=1 𝔼(𝑋𝑖)𝑘
+

𝑘!
≤ 𝜆2𝑣

2 + ∑∞
𝑘=3

𝜆𝑘𝑣𝑐𝑘−2

2
= 𝜆2𝑣

2(1−𝑐𝜆) .

The tail bound follows by maximizing

sup
𝜆∈[0,1/𝑐)

𝜆𝑡 − 𝜆2𝑣
2(1 − 𝑐𝜆)

= 𝑣
𝑐2 sup

𝜂∈[0,1)
𝜂𝑐𝑡

𝑣
− 𝜂2

2(1 − 𝜂)
.

14.8 Bibliographic remarks

(Dudley, 2002) contains a thorough discussion of the various kinds of convergences that can
be defined for random variables. In particular, (Dudley, 2002) offers a general perspective
on topological issues in probability spaces. (Dudley, 2002) also tackles the problem raised
by random variables that take values in (possibly infinite-dimensional) metric spaces.

Laws of large numbers and 0 − 1-laws fit in the more general framework of ergodic
theorems, see (Dudley, 2002) or (Durrett, 2010). An important example of law of large
numbers is the Asymptotic Equipartition Property (AEP) in Information Theory. Note
that it holds for a much larger class of sources than the set of memoryless sources (infinite
product probability spaces). See (Cover & Thomas, 1991) or [csiszar:korner:1981].

Introduction to exponential inequalities and their applications canbe found in (Massart,
2007), (Boucheron et al., 2013).
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Chapter 15

Convergence in distribution

15.1 Motivation

Recall Lesson 1. Consider Binomial distributions with parameters (𝑛, 𝜆/𝑛) and Poisson
distribution with parameter 𝜆. Graphical inspection of probability mass functions suggests
that as 𝑛 grows, Binomial distributions with parameters (𝑛, 𝜆/𝑛) look more and more alike
Poisson distribution with parameter 𝜆. Comparing probability generating functions is
more compelling. The probability generating function of the Binomial distribution with
parameters (𝑛, 𝜆/𝑛) is 𝑠 ↦ (1 + 𝜆(𝑠 − 1)/𝑛)𝑛. As 𝑛 tends towards infinity, the probability
generating functions of the Binomials converge pointwise towards the probability generat-
ing function of the Poisson distribution with mean 𝜆: 𝑠 ↦ exp(𝜆(𝑠 − 1)). In Lesson 1, we
saw other examples of distributions which tend to look alike some limiting distributions as
some parameter moves.

In Lesson 14, we equipped the set 𝐿0(Ω, ℱ, 𝑃) with topologies (𝐿𝑝, almost sure con-
vergence, convergence in probability). In this lesson, we consider the set of probability
distributions over some measurable space (Ω, ℱ). This set can be equipped with a variety
of topologies. We shall focus on the topology defined by convergence in distribution also
calledweak convergence.

In Section 15.2), we introduce weak and vague convergences for sequences of probability
distributions. In Section 15.3) Weak convergence induces the definition of convergence in
distribution for random variables that possibly live on different probability spaces (just as
our occupancy scores in Lesson 1).

Section 15.4) is dedicated to the PortemanteauTheorem. This theorem lists a number of
alternative and equivalent characterizations of convergence in distribution. Alternative char-
acterizations are useful in two respects: theymay be easier to check than the characterization
used in the definition; they may supply a larger range of applications.

In Section 15.5), we state and prove the Lévy continuity theorem. The Levy continuity
theorem relates convergence in distribution with pointwise convergence of characteristic
functions: characteristic functions not only allow us to identify probability distributions,
they are also convergence determining. It could be one more line in the statement of
Theorem 15.1). But the Lévy continuity Theorem stands out because it provides us with a
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concise proof of the Central Limit Theorem for normalized sums of centered i.i.d. random
variables. This is the content of Section 15.8).

15.2 Weak convergence, vague convergence

Weak convergence of probability measures assesses the proximity of probability measures
by comparing their action on a collection of test functions.

Definition 15.1 (Weak convergence). A sequence of probability distributions (𝑃𝑛)𝑛∈ℕ
sur ℝ𝑘 convergesweakly towards probability distribution 𝑃 (on ℝ𝑘)
iff
for any bounded and continuous function 𝑓 from ℝ𝑘 to ℝ, the sequence (𝔼𝑃𝑛

[𝑓])𝑛∈ℕ
converges towards 𝔼𝑃[𝑓].

Remark 15.1. We shall see that the there is some flexibility in the choice of the class of test
functions.

But this choice is not unlimited.
If we restrict the collection of test functions to continuous functions with compact

support (which are always bounded), we obtain a different notion of convergence.

Definition 15.2 (Vague convergence). A sequence of probability distributions
(𝑃𝑛)𝑛∈ℕ sur ℝ𝑘 converges vaguely towards measure 𝜇 (on ℝ𝑘) iff for any contin-
uous function 𝑓 with compact support from ℝ𝑘 to ℝ, the sequence (𝔼𝑃𝑛

[𝑓])𝑛∈ℕ
converges towards 𝔼𝑃[𝑓].

Example 15.1. Consider the sequence of probability masses over the integers (𝛿𝑛)𝑛∈ℕ. This
sequence converges vaguely towards the null measure. It does not converge weakly.

The next question deserves further thinking.

Exercise 15.1. If a sequence of probability distributions over ℝ𝑘 converges vaguely
towards a probability measure, does it also converge weakly towards this probability
measure?

15.3 Convergence in distribution
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Definition 15.3 (Convergence in distribution). A sequence (𝑋𝑛)𝑛∈ℕ of ℝ𝑘-valued
random variables defined on a sequence of probability spaces (Ω𝑛, ℱ𝑛, 𝑃𝑛) converges
in distribution if the sequence (𝑃𝑛 ∘ 𝑋−1

𝑛 )𝑛∈ℕ converges weakly. This is denoted by

𝑋𝑛 ⇝ 𝑋 or 𝑋𝑛 ⇝ ℒ

(ℒ denotes a probability distribution), the probability spaces are defined implicitly

In order to check or use convergence in distribution, many equivalent characterizations
are available. Some of them are listed in the Portemanteau Theorem.

15.4 Portemanteau Theorem

The next list of equivalent characterizations of weak convergence is not exhaustive.

Theorem 15.1 (Portemanteau Theorem). A sequence of probability distributions

(𝑃𝑛)𝑛∈ℕ on ℝ𝑘 converges weakly towards a probability distribution 𝑃 (on ℝ𝑘) iff one

of the equivalent properties hold:

1. For every bounded continuous function 𝑓 from ℝ𝑘 to ℝ, the sequence 𝔼𝑃𝑛
[𝑓]

converges towards 𝔼𝑃[𝑓].
2. For every bounded uniformly continuous function 𝑓 from ℝ𝑘 to ℝ, the sequence

𝔼𝑃𝑛
[𝑓] converges towards 𝔼𝑃[𝑓].

3. For every bounded Lipschitz function 𝑓 from ℝ𝑘 to ℝ, the sequence 𝔼𝑃𝑛
[𝑓]

converges towards 𝔼𝑃[𝑓].
4. For every 𝑃-almost surely bounded and continuous function 𝑓 from ℝ𝑘 to ℝ,

the sequence (𝔼𝑃𝑛
[𝑓]) converges towards 𝔼𝑃[𝑓].

5. For every closed subset 𝐹 of ℝ𝑘, lim sup𝑃𝑛(𝐹) ≤ 𝑃(𝐹).
6. For every open subset 𝑂 of ℝ𝑘, lim inf𝑃𝑛(𝑂) ≥ 𝑃(𝑂).
7. For every Borelian 𝐴 such that 𝑃(𝐴∘) = 𝑃(𝐴) (the boundary of 𝐴 is 𝑃-

negligible), lim𝑛 𝑃𝑛(𝐴) = 𝑃(𝐴).

In English, as in French, a portemanteau is a suitcase.

Proof. Implications 1) ⇒ 2) ⇒ 3) are obvious. Lévy’s continuity theorem, themajor result
from Section 15.5) entails that 3) ⇒ 1).

4).
That 5) ⇔ 6) follows from the fact that the complement of a closed set is an open set.
5) and 6) imply 7):

lim sup
𝑛

𝑃𝑛(𝐴) ≤ 𝑃(𝐴) = 𝑃(𝐴∘) ≤ lim inf
𝑛

𝑃𝑛(𝐴∘) .

By monotony:

lim inf
𝑛

𝑃𝑛(𝐴∘) ≤ lim inf
𝑛

𝑃𝑛(𝐴) ≤ lim sup
𝑛

𝑃𝑛(𝐴) ≤ lim sup
𝑛

𝑃𝑛((𝐴)) .
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Combining leads to

lim
𝑛

𝑃𝑛(𝐴) = lim inf
𝑛

𝑃𝑛(𝐴) = lim sup
𝑛

𝑃𝑛(𝐴) = 𝑃(𝐴∘) = 𝑃(𝐴) .

Let us check that 3) ⇒ 5). Let 𝐹 be a closed subset of ℝ𝑘. For 𝑥 ∈ ℝ𝑘, let d(𝑥, 𝐹)
denote the distance from 𝑥 to 𝐹. For 𝑚 ∈ ℕ, let 𝑓𝑚(𝑥) = (1 − 𝑚d(𝑥, 𝐹))

+
. The function

𝑓𝑚 is 𝑚-Lipschitz, lower bounded by 𝕀𝐹, and for every 𝑥 ∈ ℝ𝑘 lim𝑚 ↓ 𝑓𝑚(𝑥) = 𝕀𝐹(𝑥).
Weak convergence of 𝑃𝑛 to 𝑃 implies

lim
𝑛

𝔼𝑃𝑛
𝑓𝑚 = 𝔼𝑃𝑓𝑚

hence for every 𝑚 ∈ ℕ
lim sup

𝑛
𝔼𝑃𝑛

𝕀𝐹 ≤ 𝔼𝑃𝑓𝑚 .

Taking the limit on the right side leads to

lim sup
𝑛

𝑃𝑛(𝐹) = lim sup
𝑛

𝔼𝑃𝑛
𝕀𝐹 ≤ lim

𝑚
↓ 𝔼𝑃𝑓𝑚 = 𝔼𝑃𝕀𝔽 = 𝑃(𝐹) .

Assume now that 7) holds. Let us show that this entails 1)
Let 𝑓 be a bounded continuous function. Assume w.l.o.g. that 𝑓 is non-negative and

upper-bounded by 1. Recall that for each 𝜎-finite measure 𝜇

∫ 𝑓d𝜇 = ∫
[0,∞)

𝜇{𝑓 > 𝑡}d𝑡 .

This holds for all 𝑃𝑛 and 𝑃. Hence

𝔼𝑃𝑛
𝑓 = ∫

[0,∞)
𝑃𝑛{𝑓 > 𝑡}d𝑡

As {𝑓 > 𝑡} = {𝑓 ≥ 𝑡}, {𝑓 > 𝑡} ∖ {𝑓 > 𝑡}∘ = {𝑓 = 𝑡}. The set of values 𝑡 such that
𝑃{𝑓 = 𝑡} > 0 is at most countable and thus Lebesgue-negligible. Let 𝐸 be its complement.
For 𝑡 ∈ 𝐸, lim𝑛 𝑃𝑛{𝑓 > 𝑡} = 𝑃{𝑓 > 𝑡}.

lim
𝑛

𝔼𝑃𝑛
𝑓 = lim

𝑛
∫

[0,1]
𝑃𝑛{𝑓 > 𝑡}d𝑡

= lim
𝑛

∫
[0,1]

𝑃𝑛{𝑓 > 𝑡}𝕀𝐸(𝑡)d𝑡

= ∫
[0,1]

lim
𝑛

𝑃𝑛{𝑓 > 𝑡}𝕀𝐸(𝑡)d𝑡

= ∫
[0,1]

𝑃{𝑓 > 𝑡}𝕀𝐸(𝑡)d𝑡

= ∫
[0,1]

𝑃{𝑓 > 𝑡}d𝑡

= 𝔼𝑃𝑓 .
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For probability measures over (ℝ, ℬ(ℝ)), weak convergence is determined by cumula-
tive distribution functions. This is sometimes taken as a definition of weak convergence in
elementary books.

Corollary 15.1. A sequence of probability measures defined by their cumulative dis-

tribution functions (𝐹𝑛)𝑛 converges weakly towards a probability measure defined

by cumulative distribution function 𝐹 iff lim𝑛 𝐹𝑛(𝑥) = 𝐹(𝑥) at every 𝑥 which is a

continuity point of 𝐹.

For probability measures over (ℝ, ℬ(ℝ)), weak convergence is also determined by quan-
tile functions.

Proposition 15.1. A sequence of probability measures defined by their quantile func-

tions (𝐹 ←
𝑛 )𝑛 converges weakly towards a probability measure defined by quantile

function 𝐹 ← iff lim𝑛 𝐹 ←
𝑛 (𝑥) = 𝐹 ←(𝑥) at every 𝑥 which is a continuity point of 𝐹 ←.

Prove Proposition Proposition 15.1.

Proposition 15.2 (Almost sure representation). If (𝑋𝑛)𝑛 converges in distribution

towards 𝑋, then there exists a probability space (Ω, ℱ, 𝑃) with random variables

(𝑌𝑛)𝑛 and 𝑌 such that 𝑋𝑛 ∼ 𝑌𝑛 for all 𝑛, 𝑋 ∼ 𝑌, and

𝑌𝑛 → 𝑌 𝑃-a.s.

Remark 15.2. The random variables (𝑋𝑛)𝑛 and 𝑋 may live on different probability spaces.

When random variables 𝑋𝑛 are real-valued, Proposition 15.2 follows easily from Propo-
sition Proposition 15.1.

Proof. Let Ω = [0, 1], ℱ = ℬ(ℝ) and 𝜔 be uniformly distributed over Ω = [0, 1]. Let
𝑌𝑛 = 𝐹 ←

𝑛 (𝜔) and 𝑌 = 𝐹 ←(𝜔).
Then for each 𝑛,

𝑃{𝑌𝑛 ≤ 𝑡} = 𝑃{𝜔 ∶ 𝐹 ←
𝑛 (𝜔) ≤ 𝑡} = 𝑃{𝜔 ∶ 𝜔 ≤ 𝐹𝑛(𝑡)} = 𝐹𝑛(𝑡)

so that 𝑌𝑛 ∼ 𝐹𝑛. And by the same argument, 𝑌 ∼ 𝐹.
As a non-decreasing function has at most countably many discontinuities,

𝑃{𝜔 ∶ 𝐹 ← is continuous at 𝜔} = 1 .

Now, assume 𝜔 is a continuity point of 𝐹 ←. Then by Proposition Proposition 15.1,
lim𝑛 𝐹 ←

𝑛 (𝜔) = 𝐹 ←(𝜔). This translates to

𝑃{𝜔 ∶ lim
𝑛

𝑌𝑛(𝜔) = 𝑌 (𝜔)} = 1 .
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15.5 L�vy continuity theorem

Theorem 15.2 (Lévy’s continuity theorem). A sequence (𝑃𝑛)𝑛 of probability distri-

butions over ℝ𝑑 converges weakly towards a probability distribution 𝑃 over ℝ𝑑 iff the

sequence of characteristic functions converges pointwise towards the characteristic

function of 𝑃.

Remark 15.3. Theorem 15.2 asserts that weak convergence of probability measures is char-
acterized by a very small subset of bounded continuous functions. To warrant weak con-
vergence of (𝑃𝑛)𝑛 towards 𝑃 it is enough to check that 𝔼𝑃𝑛

𝑓 → 𝔼𝑃𝑓 for functions 𝑓 in
family {cos(𝑡⋅), sin(𝑡⋅) ∶ 𝑡 ∈ ℝ}. These functions are bounded and infinitely many times
differentiable.

Let (𝑋𝑛)𝑛, 𝑋 and 𝑍 live on the same probability space. If (𝑋𝑛)𝑛, 𝑋 and 𝑍 are random
variables such that for every 𝜎 > 0, 𝑋𝑛 + 𝜎𝑍 ⇝ 𝑋 + 𝜎𝑍, then 𝑋𝑛 ⇝ 𝑋.

Proof. Let ℎ be bounded by 1 and 1-Lipschitz

∣𝔼ℎ(𝑋𝑛) − ℎ(𝑋)∣ ≤ ∣𝔼ℎ(𝑋𝑛) − ℎ(𝑋𝑛 + 𝜎𝑍)∣

+ ∣𝔼ℎ(𝑋𝑛 + 𝜎𝑍) − ℎ(𝑋 + 𝜎𝑍)∣

+ ∣𝔼ℎ(𝑋 + 𝜎𝑍) − ℎ(𝑋)∣

The first and third summand can be handled in the same way.
Let 𝜖 > 0,

∣𝔼ℎ(𝑋𝑛) − ℎ(𝑋𝑛 + 𝜎𝑍)∣ ≤ ∣𝔼(ℎ(𝑋𝑛) − ℎ(𝑋𝑛 + 𝜎𝑍))𝕀𝜎|𝑍|>𝜖∣

+ ∣𝔼(ℎ(𝑋𝑛) − ℎ(𝑋𝑛 + 𝜎𝑍))𝕀𝜎|𝑍|≤𝜖∣

≤ 2𝑃{𝜎|𝑍| > 𝜖} + 𝜖 .

Combining the different bounds leads to

∣𝔼ℎ(𝑋𝑛) − ℎ(𝑋)∣ ≤ 2𝑃{𝜎|𝑍| > 𝜖} + 𝜖 + ∣𝔼ℎ(𝑋𝑛 + 𝜎𝑍) − ℎ(𝑋 + 𝜎𝑍)∣

The last summandon the right-hand-side tends to0 as𝑛 tends to infinity. The first summand
tends to 0 as 𝜎 tends to 0.

Hence

lim sup
𝑛

∣𝔼ℎ(𝑋𝑛) − ℎ(𝑋𝑛 + 𝜎𝑍)∣ ≤ 𝜖 .
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Lemma 15.1 (Scheffé’s Lemma). Let (𝑃𝑛)𝑛 be a sequence of absolutely continuous

probability distributions with densities (𝑓𝑛)𝑛. Assume that densities (𝑓𝑛)𝑛 converge

pointwise towards the density 𝑓 of some probability distribution 𝑃, then 𝑃𝑛 ⇝ 𝑃.

Proof.

∫
ℝ

|𝑓𝑛(𝑥) − 𝑓(𝑥)|d𝑥 = ∫
ℝ
(𝑓(𝑥) − 𝑓𝑛(𝑥))+d𝑥 + ∫

ℝ
(𝑓(𝑥) − 𝑓𝑛(𝑥))−d𝑥

= 2 ∫
ℝ
(𝑓(𝑥) − 𝑓𝑛(𝑥))+d𝑥 .

Observe (𝑓 −𝑓𝑛)+ ≤ 𝑓which belongs toℒ1(ℝ, ℬ(ℝ),Lebesgue). And (𝑓 −𝑓𝑛)+ converges
pointwise to 0. Hence, by the dominated convergence theorem, lim𝑛 ∫

ℝ
|𝑓𝑛 − 𝑓|d𝑥 = 0.

For any 𝐴 ∈ ℬ(ℝ),

𝑃𝑛(𝐴) − 𝑃(𝐴) = ∫
ℝ

𝕀𝐴(𝑓𝑛 − 𝑓) ≤ ∫
ℝ

|𝑓𝑛 − 𝑓| .

We have proved more than weak convergence, namely

lim
𝑛

sup
𝐴∈ℬ(ℝ)

|𝑃𝑛(𝐴) − 𝑃(𝐴)| = 0 .

Proof of continuity theorem. Assume the characteristic functions of (𝑋𝑛)𝑛 converges point-
wise towards the characteristic function of 𝑋.

Let 𝑍 be a standard Gaussian random variable, independent of all (𝑋𝑛)𝑛 and of 𝑋. For
𝜎 > 0, the distributions of𝑋𝑛+𝜎𝑍 and𝑋+𝜎𝑍have densities that are uniquely determined
by the characteristic functions of 𝑋𝑛 and 𝑋. Moreover, a dominated convergence argument
shows that the densities of 𝑋𝑛 + 𝜎𝑍 converge pointwise towards the density of 𝑋 + 𝜎𝑍.
By Scheffé’s Lemma, this entails that 𝑋𝑛 + 𝜎𝑍 ⇝ 𝑋 + 𝜎𝑍.

As this holds for all 𝜎 > 0, this entails that 𝑋𝑛 ⇝ 𝑋.

15.6 Refining the continuity theorem

In some situations, we can prove that a sequence of characteristic functions converges point-
wise towards some function, but we have no candidate for the limiting distribution. The
question arises whether the pointwise limit of characteristic functions is the characteristic
function of some probability distribution or something else.

The answer may be negative: if 𝑃𝑛 = 𝒩(0, 𝑛), the sequence of characteristic functions
is (𝑡 ↦ exp(−𝑛𝑡2/2))

𝑛
which converges pointwise to 0 except at 0 where it is equal to 1

all along. The limit is not the characteristic function of any probability measure: it is not
continuous at 0.

The next Theorem settles the question.
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Theorem 15.3 (Lévy’s continuity theorem, second form). A sequence (𝑃𝑛)𝑛 of proba-

bility distributions over ℝ converges weakly towards a probability distribution over ℝ
iff the sequence of characteristic functions converges pointwise towards a function that

is continuous at 0. The limit function is the characteristic function of some probability

distribution.

Definition 15.4 (Uniform tightness). A sequence of Probability measures (𝑃𝑛)𝑛 over
ℝ is uniformly tight if for every 𝜖 > 0, there exists some compact 𝐾 ⊆ ℝ such that

∀𝑛, 𝑃𝑛(𝐾) ≥ 1 − 𝜖 .

Exercise 15.2. To establish uniform tightness of (𝑃𝑛)𝑛, it is enough to show that for
every 𝜖 > 0, there exists some 𝑛0(𝜖), and some compact 𝐾 ⊆ ℝ such that

∀𝑛 ≥ 𝑛(𝜖), 𝑃𝑛(𝐾) ≥ 1 − 𝜖 .

We admit the (important) next Theorem.

Theorem 15.4 (Prokhorov-Le Cam). If (𝑃𝑛)𝑛 is a uniformly tight sequence of proba-

bility measures on ℝ, then there exists some probability measure 𝑃 and some subse-

quence (𝑃𝑛(𝑘))𝑘∈ℕ such that

𝑃𝑛(𝑘) ⇝ 𝑃 .

Then

Lemma 15.2 (Uniform tightness Lemma). Let (𝑃𝑛)𝑛 be a sequence of probability

distributions over ℝ, with characteristic functions ̂𝐹𝑛. If the sequence ( ̂𝐹𝑛)𝑛 converge

pointwise towards a function that is continuous at 0 then the sequence (𝑃𝑛)𝑛 is

uniformly tight.

We shall use the following technical upper bound which is illustrated in Figure 15.1:

∀𝑡 ∈ ℝ ∖ [−1, 1], sin(𝑡)
𝑡

≤ sin(1) ≤ 6
7

.

Proposition 15.3 (Truncation Lemma). Let ̂𝐹 be the characteristic function of some

probability measure 𝑃 on the real line, then for all 𝑢 > 0:

1
𝑢

∫
𝑢

0
(1 − Re ̂𝐹 (𝑣))d𝑣 ≥ 1

7
𝑃[−1

𝑢
, 1

𝑢
]

𝑐
.
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−.25

0

sin(1)

1

−1 0 1

x

si
nc

(x
)

Figure 15.1: The proof of the truncation inequality takes advantage on easy bounds satisfied
by the sinc function.

Proof of Truncation Lemma.

1
𝑢

∫
𝑢

0
(1 − Re ̂𝐹𝑛(𝑣))d𝑣 = 1

𝑢
∫

𝑢

0
( ∫

ℝ
(1 − cos(𝑣𝑤))d𝐹(𝑤))d𝑣

= ∫
ℝ

∫
𝑢

0

1
𝑢

((1 − cos(𝑣𝑤))d𝑣)d𝐹(𝑤)

= ∫
ℝ

(1 − sin(𝑢𝑤)
𝑢𝑤

)d𝐹(𝑤)

≥ ∫
|𝑢𝑤|≥1

(1 − sin(𝑢𝑤)
𝑢𝑤

)d𝐹𝑛(𝑤)

≥ (1 − sin(1))𝑃[−1
𝑢

, 1
𝑢

]
𝑐

where the two inequalities follow from the bounds on the sinc function.

Proof of Uniform tightness Lemma. Assume that the sequence ( ̂𝐹𝑛)𝑛 converge pointwise
towards a function ̂𝐹 that is continuous at 0.

Note that ̂𝐹𝑛(0) = 1 for all 𝑛, hence, trivially, 1 = lim𝑛 ̂𝐹𝑛(0) = ̂𝐹 (0).
As |Re ̂𝐹𝑛(𝑡)| ≤ 1, |Re ̂𝐹 (𝑡)| ≤ 1 also holds.
Fix 𝜖 > 0, as ̂𝐹 is continuous at 0, for some 𝑢 > 0, for all 𝑣 ∈ [−𝑢, 𝑢], 0 ≥ 1 − ̂𝐹 (𝑢) ≤

𝜖/2. Hence,

0 ≤ 1
𝑢

∫
𝑢

0
(1 − Re ̂𝐹 (𝑣))d𝑣 ≤ 𝜖/2 .
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By dominated convergence,

lim
𝑛

1
𝑢

∫
𝑢

0
(1 − Re ̂𝐹𝑛(𝑣))d𝑣 = 1

𝑢
∫

𝑢

0
(1 − Re ̂𝐹 (𝑣))d𝑣 ≤ 𝜖/2 .

For sufficiently large 𝑛, 0 ≤ 1
𝑢 ∫𝑢

0
(1 − Re ̂𝐹𝑛(𝑣))d𝑣 ≤ 𝜖.

Applying the truncation Lemma, for sufficiently large 𝑛, we have

𝑃𝑛[−1
𝑢

, 1
𝑢

]
𝑐

≤ 7𝜖 .

The interval [−1
𝑢 , 1

𝑢] is compact.

Proof of the second form of the continuity theorem. We combine the Uniform Tightness
Lemma and the Prokhorov-Le Cam Theorem. Under the assumptions of the second
form of the continuity Theorem, there is a probability measure 𝑃 (with characteristic
function ̂𝐹), and a subsequence (𝑃𝑛(𝑘))𝑘∈ℕ such that 𝑃𝑛(𝑘) ⇝ 𝑃 as 𝑘 → ∞. This entails

̂𝐹𝑛(𝑘) → ̂𝐹 as 𝑘 → ∞ pointwise. This also entails that ̂𝐹𝑛 → ̂𝐹 pointwise for the whole
sequence. Finally, we are able to invoke Theorem 15.2) to conclude 𝑃𝑛 ⇝ 𝑃 as 𝑛 → ∞.

Remark 15.4. All definitions and results in this section can be extended to the 𝑘-dimensional
setting for all 𝑘 ∈ ℕ.

15.7 Relations between convergences

The alternative characterizations of weak convergence provided by the Portemanteau Theo-
rem (Theorem 15.1)) facilitate the proof of the next Proposition.

Convergence in probability implies convergence in distribution.

Proof. Assume (𝑋𝑛)𝑛 converges in probability towards 𝑋.
Let ℎ be a bounded and Lipschitz function. Without loss of generality, assume that

|𝑓(𝑥)| ≤ 1 for all 𝑥 and |𝑓(𝑥) − 𝑓(𝑦)| ≤ d(𝑥, 𝑦).
Let 𝜖 > 0.

∣𝔼ℎ(𝑋𝑛) − 𝔼ℎ(𝑋)∣ = ∣𝔼[(ℎ(𝑋𝑛) − ℎ(𝑋)𝕀d(𝑋,𝑋𝑛)>𝜖]

+ 𝔼[(ℎ(𝑋𝑛) − ℎ(𝑋)𝕀d(𝑋,𝑋𝑛)≤𝜖]∣

≤ 𝔼[2𝕀d(𝑋,𝑋𝑛)>𝜖]

+ 𝔼[|ℎ(𝑋𝑛) − ℎ(𝑋)|𝕀d(𝑋,𝑋𝑛)≤𝜖]

≤ 2𝑃{d(𝑋, 𝑋𝑛) > 𝜖} + 𝜖 .

Convergence in probability entails that

lim sup
𝑛

∣𝔼ℎ(𝑋𝑛) − 𝔼ℎ(𝑋)∣ ≤ 𝜖.

As this holds for every 𝜖 > 0, for every bounded Lipschitz function ℎ, lim𝑛 ∣𝔼ℎ(𝑋𝑛) −

𝔼ℎ(𝑋)∣ = 0. This is sufficient to establish convergence in distribution of (𝑋𝑛)𝑛.
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15.8 Central limit theorem

The Lévy Continuity Theorem (Theorem 15.2)) is the conerstone of a very concise proof
the simplest version of the Central Limit Theorem (CLT). Under square-integrability
assumption, the CLT refines the Laws of Large Numbers. It states that as 𝑛 tends to infinity,
the fluctuations of the empirical mean ∑𝑛

𝑖=1 𝑋𝑖/𝑛 around its expectation tends to be of
order 1/

√
𝑛 and, once rescaled, to be normally distributed.

Theorem 15.5. Let 𝑋1, … , 𝑋𝑛, … be i.i.d. with finite variance 𝜎2 and expectation

𝜇. Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖.

√
𝑛 (𝑆𝑛

𝑛
− 𝜇) ⇝ 𝒩(0, 𝜎2) .

Proof. Let ̂𝐹 denote the characteristic function of the (common) distribution of the random
variables ((𝑋𝑖 − 𝜇)/𝜎)𝑖. Recall fron Lesson 12, that the centering and square integrability
assumptions imply that

̂𝐹 (𝑡) = ̂𝐹 (0) + ̂𝐹 ′(0)𝑡 +
̂𝐹 ′(0)
2

𝑡2 + 𝑡2𝑅(𝑡) = 1 − 𝑡2

2
+ 𝑡2𝑅(𝑡)

where lim𝑡→0 𝑅(𝑡) = 0. Let ̂𝐹𝑛 denote the characteristic function of
√

𝑛 (𝑆𝑛
𝑛 − 𝜇) /𝜎. Fix

𝑡 ∈ ℝ,
̂𝐹𝑛(𝑡) = ( ̂𝐹 (𝑡/

√
𝑛))

𝑛
= (1 − 𝑡2

2𝑛
+ 𝑡2

𝑛
𝑅(𝑡/

√
𝑛))

𝑛
.

As 𝑛 → ∞,

lim
𝑛

(1 − 𝑡2

2𝑛
+ 𝑡2

𝑛
𝑅(𝑡/

√
𝑛))

𝑛
= e− 𝑡2

2 .

On the right-hand-side, we recognize the characteristic function of 𝒩(0, 1).

Remark 15.5. The conditions in the Theorem statement allows for a short proof. They are
by no mean necessary. The summands need not be identically distributed. The summands
need not be independent. A version of the Lindeberg-Feller Theorem states that undermild
assumptions, centered and normalized sums of independent square-integrable random
variables converge in distribution towards a Gaussian distribution.

15.9 Cramer-Wold device

So far, we have discussed characteristic functions for real valued random variables. But
characteristic functions can be defined for vector-valued random variables. If 𝑋 is a ℝ𝑘-
valued random variable, its characteristic function maps ℝ𝑘 to ℂ:

ℝ𝑘 → ℂ
𝑡 ↦ 𝔼e𝑖⟨𝑡,𝑋⟩ .
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The importance of multivariate characteristic functions is reflected in the next device
which proof is left to the reader. It consists in the adapting the proof of Theorem 12.4).

Theorem 15.6 (Cramer-Wold). The distribution of a ℝ𝑘-valued random vector 𝑋 =
(𝑋1, … , 𝑋𝑘)𝑇 is completely determined by the collection of distributions of univariate

random variables ⟨𝑡, 𝑋⟩ = ∑𝑛
𝑖=1 𝑡𝑖𝑋𝑖 where (𝑡1, … , 𝑡𝑛)𝑇 belongs to ℝ𝑛.

Theorem 15.6) provides a short path to the Multivariate Central Limit Theorem.

Theorem 15.7. Let 𝑋1, … , 𝑋𝑛, … be i.i.d. vector valued random variables with finite

covariance Γ and expectation 𝜇. Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖.

√
𝑛 (𝑆𝑛

𝑛
− 𝜇) ⇝ 𝒩(0, Γ) .𝑠

15.10 Weak convergence and transforms

In Lesson Chapter 12, we introduced different characterizations of probability distributions:
probability generating functions, Laplace transforms, Fourier transforms (characteristic
functions), cumulative distribution functions, quantiles functions. Within their scope, all
those transforms are convergence determining: if a sequence of probability distributions
converges weakly, so does (pointwise) the corresponding sequence of transforms, at least at
the continuity points of the limiting transform.

In the next two theorems, each random variable is assumed to live on some (implicit)
probability space.

A sequence of non-negative random variables (𝑋𝑛)𝑛 converges in distribution towards
the non negative random variable 𝑋 iff the sequence of Laplace transforms converges
pointwise towards the Laplace transform of the probability distribution of 𝑋.

The proof parallels the derivation of Theorem 15.2).
As probability generating functions allows us to recover Laplace transforms, the next

theorem is a special case of the statement concerning Laplace transforms.
A sequence of integer-valued randomvariables (𝑋𝑛)𝑛 converges in distribution towards

the integer-valued random variable 𝑋 iff the sequence of Laplace transforms converges
pointwise towards the Laplace transform of the probability distribution of 𝑋.

15.11 Bibliographic remarks

Dudley (2002) discusses convergence in distributions in two chapters: the first one is dedi-
cated to distributions on ℝ𝑑 and the central limit theorem; the second chapter addresses
more general universes. In the first chapter, the central limit theorem is extended to trian-
gular arrays that is to sequences of not necessarily identically distributed random variables
(Lindeberg’s Theorem).
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15.11. BIBLIOGRAPHIC REMARKS

Dudley (2002) investigates convergence in distributions as convergence of laws on

separable metric spaces, that is in a much broader context than we do in these notes. The
reader will find there a complete proof of the Prokhorov-Le CamTheorem and an in-depth
discussion of its corollaries. In (Dudley, 2002), a great deal of effort is dedicated to the
metrization of the weak convergence topology. The reader will also find in this book a full
picture of almost sure representation arguments.

The proof of the Lévy Continuity Theorem given here is taken from (Pollard, 2002).
Using metrizations for weak convergence allows us to investigate rate of convergence in

limit theorems. This goes back at least to the Berry-Esseen’s Theorem (1942). Quantitative
approaches to weak convergence have acquired a new momentum with the popularization
of Stein’s method. This methods is geared towards, but exclusively focused on, general yet
quantitative versions of the Central Limit Theorem (Chen, Goldstein, & Shao, 2011) . A
thorough yet readable introduction to Stein’s method is (Nathan Ross, 2011).
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Chapter 16

Gaussian vectors

16.1 Univariate Gaussian distribution

The standard Gaussian density is denoted by 𝜙:

𝜙(𝑥) = e− 𝑥2
2

√
2𝜋

.

The corresponding cumulative distribution function is denoted byΦ. The survival function
1 − Φ is denoted by Φ.

Φ(𝑥) = ∫
𝑥

−∞
𝜙(𝑢)d𝑢 .

Let is denote by 𝒩(0, 1) (expectation 0, variance 1) the standard Gaussian probability
distribution, that is the probability distribution defined by 𝜙.

Any affine transform of a standard Gaussian random variable is distributed according
to a univariate Gaussian distribution. If 𝑋 ∼ 𝒩(0, 1) then 𝜎𝑋 + 𝜇 ∼ 𝒩 (𝜇, 𝜎2) with
density 1

𝜎𝜙 ( ⋅−𝜇
𝜎 ), cumulative distribution function Φ ( ⋅−𝜇

𝜎 ).
The standard Gaussian distribution is characterized by the next identity.

Lemma 16.1 (Stein’s Lemma). Let 𝑋 ∼ 𝒩(0, 1), let 𝑔 be an absolutely continuous

function with derivative 𝑔′ such that 𝔼[|𝑋𝑔(𝑋)|] < ∞, then 𝑔′(𝑋) is integrable and

𝔼[𝑔′(𝑋)] = 𝔼[𝑋𝑔(𝑋)] .

Proof. The proof relies on integration by parts. First note that replacing 𝑔 by 𝑔 − 𝑔(0)
changes neither 𝑔′, nor 𝔼[𝑋𝑔(𝑋)]. We may assume that 𝑔(0) = 0.
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𝔼[𝑋𝑔(𝑋)] = ∫
ℝ

𝑥𝑔(𝑥)𝜙(𝑥)d𝑥

= ∫
∞

0
𝑥𝑔(𝑥)𝜙(𝑥)d𝑥 + ∫

0

−∞
𝑥𝑔(𝑥)𝜙(𝑥)d𝑥

= ∫
∞

0
𝑥 ∫

∞

0
𝑔′(𝑦)𝕀𝑦≤𝑥d𝑦𝜙(𝑥)d𝑥 − ∫

0

−∞
𝑥 ∫

0

−∞
𝑔′(𝑦)𝕀𝑦≥𝑥d𝑦𝜙(𝑥)d𝑥

= ∫
∞

0
𝑔′(𝑦) ∫

∞

0
𝕀𝑦≤𝑥𝑥𝜙(𝑥)d𝑥d𝑦 − ∫

0

−∞
𝑔′(𝑦) ∫

0

−∞
𝑥𝜙(𝑥)𝕀𝑦≥𝑥d𝑥d𝑦

= ∫
∞

0
𝑔′(𝑦) ∫

∞

𝑦
𝑥𝜙(𝑥)d𝑥d𝑦 − ∫

0

−∞
𝑔′(𝑦) ∫

𝑦

−∞
𝑥𝜙(𝑥)d𝑥d𝑦

= ∫
∞

0
𝑔′(𝑦)𝜙(𝑦)d𝑦 − ∫

0

−∞
−𝑔′(𝑦)𝜙(𝑦)d𝑦

= ∫
∞

−∞
𝑔′(𝑦)𝜙(𝑦)d𝑦 .

The last inequality is justified by Tonelli-Fubini’s Theorem. Then, we rely on 𝜙′(𝑥) =
−𝑥𝜙(𝑥).

The characteristic function is a very efficient tool when handlingGaussian distributions.

Proposition 16.1. The characteristic function of 𝒩(𝜇, 𝜎2) is

Φ̂(𝑡) ∶= 𝔼 [e𝚤𝑡𝑋] = e𝚤𝑡𝜇− 𝑡2𝜎2
2 .

Proof. It is enough to check the proposition for 𝒩(0, 1). As 𝜙 is even,

Φ̂(𝑡) = ∫
∞

−∞
e𝚤𝑡𝑥 e− 𝑥2

2
√

2𝜋
d𝑥

= ∫
∞

−∞
cos(𝑡𝑥)e

− 𝑥2
2

√
2𝜋

d𝑥 .

Derivation with respect to 𝑡, interchanging derivation and expectation (why can we do
that?)

Φ̂′(𝑡) = ∫
∞

−∞
−𝑥 sin(𝑡𝑥)e

− 𝑥2
2

√
2𝜋

d𝑥 .

Now relying on Stein’s Identity with 𝑔(𝑥) = − sin(𝑡𝑥) and 𝑔′(𝑥) = −𝑡 cos(𝑡𝑥)

Φ̂′(𝑡) = −𝑡 ∫
∞

−∞
cos(𝑡𝑥)𝜙(𝑥)d𝑥

= −𝑡Φ̂(𝑡) .
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We immediately get Φ̂(0) = 1, and solving the differential equation leads to

log Φ̂(𝑡) = −𝑡2

2
.

The fact that the characteristic function completely defines the probability distribution
provides us with a converse of Lemma 16.1.

Lemma 16.2 (Stein’s Lemma (bis)). Let 𝑋 be a real-valued random variable on some

probability space. If, for any differentialle function 𝑔 such that 𝑔′ and 𝑥 ↦ 𝑥𝑔(𝑥)
are integrable, the following holds

𝔼[𝑔′(𝑋)] = 𝔼[𝑋𝑔(𝑋)]

then the distribution of 𝑋 is standard Gaussian

Proof. Consider the real ̂𝐹 and the imaginary part 𝐺 of the characteristic function of the
distribution pf 𝑋, the identity entails that ̂𝐹 ′(𝑡) = −𝑡 ̂𝐹 (𝑡) and 𝐺′(𝑡) = −𝑡𝐺(𝑡) with

̂𝐹 (0) = 1 and 𝐺(0) = 0. Solving the two differential equations leads to ̂𝐹 (𝑡) = e−𝑡2/2 and
𝐺(𝑡) = 0. We just checked that the characteristic function of the distribution of 𝑋 is the
characteristic function of 𝒩(0, 1).

It is now easy to check that the distribution of the sum of two independent Gaussian
random variables is a Gaussian random variable.

If 𝑋 and 𝑌 are two independent random variables distributed according to 𝒩(𝜇, 𝜎2)
and 𝒩(𝜇′, 𝜎′2) then 𝑋 + 𝑌 is distributed according to 𝒩(𝜇 + 𝜇′, 𝜎2 + 𝜎′2).

Check and justify.
The moment generating function of a Gaussian random variable is given by

𝑠 ↦ 𝔼 [e𝑠𝑋] = e 𝑠2
2 .

From Markov’s inequality, we obtain interesting upper bounds on the Gaussian tail
function. Some calculus allows us to refine the tail bounds

Proposition 16.2 (Tail probabilities for Gaussian distribution). For 𝑥 ≥ 0,

𝜙(𝑥)
𝑥

(1 − 1
𝑥2 ) ≤ Φ(𝑥) ≤ min(e− 𝑥2

2 , 𝜙(𝑥)
𝑥

) .

Proof. The proof boils down to repeated integration by parts.

Φ(𝑥) = ∫
∞

𝑥

1√
2𝜋

e− 𝑢2
2 d𝑢

= [− 1√
2𝜋𝑢

e− 𝑢2
2 ]

∞

𝑥
− ∫

∞

𝑥

1√
2𝜋

1
𝑢2 e

− 𝑢2
2 d𝑢.

m1 isifar 173 ma1ay010



CHAPTER 16. GAUSSIAN VECTORS

As the second term is non-positive,

Φ(𝑥) ≤ [− 1√
2𝜋𝑢

e− 𝑢2
2 ]

∞

𝑥
= 𝜙(𝑥)

𝑥
.

This is the first part of the right-hand inequality, the other part comes from Markov’s
inequality. For the left-hand inequality, we have to upper bound ∫∞

𝑥
1√
2𝜋

1
𝑢2 e− 𝑢2

2 d𝑢.

∫
∞

𝑥

1√
2𝜋

1
𝑢2 e

− 𝑢2
2 d𝑢 = [ −1√

2𝜋
1
𝑢3 e

− 𝑢2
2 ]

∞

𝑥
− ∫

∞

𝑥

1√
2𝜋

3
𝑢4 e

− 𝑢2
2 d𝑢

≤ 1√
2𝜋

1
𝑥3 e

− 𝑥2
2 .

Proposition 16.3 (Moments). For a standard Gaussian random variable,

𝔼 [𝑋𝑘] == {
0 if 𝑘 is odd

𝑘!
2𝑘/2(𝑘/2)! = Γ(𝑘+1)

2𝑘/2Γ(𝑘/2+1) if 𝑘 is even.

Proof. Thanks to distributional symmetry, 𝔼 [𝑋𝑘] = 0 for all odd𝑘. We handle even powers
using integration by parts:

𝔼 [𝑋𝑘+2] = (𝑘 + 1)𝔼 [𝑋𝑘] .

Induction on 𝑘 leads to,

𝔼 [𝑋2𝑘] =
𝑘

∏
𝑗=1

(2𝑗 − 1) = (2𝑘)!
2𝑘𝑘!

.

Note that (2𝑘)!/(2𝑘𝑘!) is also the number of partitions of {1, … , 2𝑘} into subsets of
cardinality 2.

The skewness is null, the kurtosis (ratio of fourth centredmoment over squared variance
equals 3:

𝔼[𝑋4] = 3 × 𝔼[𝑋2]2 .

16.2 Gaussian vectors

A Gaussian vector is a collection of univariate Gaussian random variables that satisfies a
very stringent property:
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Definition 16.1 (GaussianVector). A random vector (𝑋1, … , 𝑋𝑛)⊤ is aGaussian vec-

tor iff for any real vector (𝜆1, 𝜆2, … , 𝜆𝑛)⊤, the distribution of the univariate random
variable ∑𝑛

𝑖=1 𝜆𝑖𝑋𝑖 is Gaussian.

Remark 16.1. Not every collection of Gaussian random variables forms a Gaussian vector.
The random vector (𝑋, 𝜖𝑋) with 𝑋 ∼ 𝒩(0.1), independent of 𝜖 which is worth ±1

with probability 1/2, is not a Gaussian vector although both 𝑋 and 𝜖𝑋 are univariate
Gaussian random variables.

Exercise 16.1. Check that 𝜖𝑋 is a Gaussian random variable.

Yet there are Gaussian vectors! A simple way to obtain a Gaussian vector is provided by
the next proposition (checked by a characteristic function argument).

Proposition 16.4. If 𝑋1, … , 𝑋𝑛 is a sequence of independent Gaussian random

variables, then (𝑋1, … , 𝑋𝑛)⊤ is a Gaussian vector.

In the sequel, a standard Gaussian vector is a random vector with independent coordi-
nates with each coordinate distributed according to 𝒩(0, 1).

We will see how to construct general Gaussian vectors. Before this, let us check that the
joint distribution of a Gaussian random vector is completely characterized by its covariance
matrix and its expectation vector.

Recall that the covariance of random vector 𝑋 = (𝑋1, … , 𝑋𝑛)⊤ is the matrix 𝐾 with
dimension 𝑛 × 𝑛 with coefficients

𝐾[𝑖, 𝑗] = Cov(𝑋𝑖, 𝑋𝑗) = 𝔼[𝑋𝑖𝑋𝑗] − 𝔼[𝑋𝑖]𝔼[𝑋𝑗].

Without loss of generality, we may assume that random vector 𝑋 is centered For every
𝜆 = (𝜆1, … , 𝜆𝑛)⊤ ∈ ℝ𝑛, we have:

var(⟨𝜆, 𝑋⟩) = 𝜆⊤𝐾𝜆 = trace(𝐾𝜆𝜆⊤)

(this is does not depend on any Gaussianity assumption).
Indeed,

var(⟨𝜆, 𝑋⟩) = 𝔼 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

𝜆𝑖𝑋𝑖)
2

⎤⎥
⎦

=
𝑛

∑
𝑖,𝑗=1

𝔼 [𝜆𝑖𝜆𝑗𝑋𝑖𝑋𝑗]

=
𝑛

∑
𝑖,𝑗=1

𝜆𝑖𝜆𝑗𝐾[𝑖, 𝑗]

= 𝜆⊤𝐾𝜆 .
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The characteristic function of a Gaussian vector 𝑋 with expectation vector 𝜇 and
covariance 𝐾 satisfies

𝔼e𝚤⟨𝜆,𝑋⟩ = e𝚤⟨𝜆,𝜇⟩− 𝜆⊤𝐾𝜆
2 .

A linear transform of a Gaussian vector is a Gaussian vector.

Proposition 16.5. If 𝑌 = (𝑌1, … , 𝑌𝑛)⊤ is a Gaussian vector with covariance 𝐾
and 𝐴 a real matrix with dimensions 𝑝 × 𝑛, then 𝐴 × 𝑌 is Gaussian vector with

expectation 𝐴 × 𝔼𝑌 and covariance matrix

𝐴𝐾𝐴⊤.

Proof. Without loss of generality, we assume 𝑌 is centred.
For any 𝜆 ∈ ℝ𝑝, ⟨𝜆, 𝐴𝑌 ⟩ = ⟨𝐴⊤𝜆, 𝑌 ⟩ , thus 𝐴 × 𝑌 is Gaussian with variance

𝜆⊤𝐴𝐾𝐴⊤𝜆 .

The covariance of 𝐴 × 𝑌 is determined by this observation.

To manufacture Gaussian vectors with general covariance matrices, we rely on an
important notion from matrix analysis.

Definition 16.2 (Semi-Definite Positive matrices). A symmetric matrix 𝑀 with di-
mensions 𝑘 × 𝑘 is Definite Positive (respectively Semi-Definite Positive) iff, for any
non-null vector 𝑣 ∈ ℝ𝑘,

𝑣⊤𝑀𝑣 > 0 (resp. 𝑣⊤𝑀𝑣 ≥ 0) .

We denote by dp(𝑘) (resp. sdp(𝑘)), the cones of Definite Positive (resp. Semi-Definite
Positive) matrices.

Proposition 16.6. If 𝐾 is the covariance matrix of a random vector, 𝐾 is symmetric,

Semi-Definite Positive.

Proof. If 𝑋 is a ℝ𝑘-valued random vector, with covariance 𝐾, for any vector 𝜆 ∈ ℝ𝑛,

𝜆⊤𝐾𝜆 = ∑
𝑖,𝑗≤𝑘

𝐾𝑖,𝑗𝜆𝑖𝜆𝑗 = cov(⟨𝜆, 𝑋⟩, ⟨𝜆, 𝑋⟩)

soit 𝜆⊤𝐾𝜆 = var(⟨𝜆, 𝑋⟩). The variance of a univariate random variable is always non-
negative.

The next observation is the key to the construction to general Gaussian vectors.
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Proposition 16.7 (Cholesky’s factorization). If 𝐴 is a Semi-definite Positive symmetric

matrix then there exists (at least) a real matrix 𝐵 such that 𝐴 = 𝐵⊤𝐵.

We do not check this proposition. This is a basic Theorem from matrix analysis. It
can be established from the spectral decomposition theorem for symmetric matrices. It can
also be established by a simple constructive approach: a positive definite matrix 𝐾 admits a
Cholesky decomposition, in other words, there exists a triangular matrix lower than 𝐿 such
that 𝐾 = 𝐿 × 𝐿⊤.

The next proposition is a corollary of the general formula for image densities.

Proposition 16.8. If 𝐴 is a symmetric positive definite matrix (𝐴 ∈ dp(𝑛)), then the

distribution of the centred Gaussian vector with covariance matrix 𝐴 is absolutely

continuous with respect to Lebesgue’s measure on ℝ𝑛:

1
(2𝜋)𝑛/2 det(𝐴)1/2 exp(−𝑥⊤𝐴−1𝑥

2
) .

Proof. The density formula is trivially correct for standardGaussian vectors. For the general
case, it is enough to invoke the image density formula to the image of the standard Gaussian
vector by the bijective linear transformation defined by the Cholesky factorization of 𝐴.
The determinant of the Cholesky factor is the square root of the determinant of 𝐴.

Exercise 16.2. Is the distribution of a Gaussian vector 𝑋 with singular covariance
matrix absolutely continuous with respect to Lebesgue measure?

Definition 16.3 (Gaussian space). If𝑋 = (𝑋1, … , 𝑋𝑛)⊤ is a centeredGaussian vector
with covariance matrix 𝐾 , the set {∑𝑛

𝑖=1 𝜆𝑖𝑋𝑖 = ⟨𝜆, 𝑋⟩; 𝜆 ∈ ℝ𝑛} is the Gaussian
space generated by 𝑋 = (𝑋1, … , 𝑋𝑛)⊤).

The Gaussian space is a real vector space. If (Ω, ℱ, 𝑃) denotes the probability space,
𝑋 lives on, the Gaussian space is a subspace of 𝐿2

ℝ(Ω, ℱ, 𝑃). It inherits the inner product
structure from 𝐿2

ℝ(Ω, ℱ, 𝑃).

This inner-product is completely defined by the covariance matrix 𝐾.
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⟨
𝑛

∑
𝑖=1

𝜆𝑖𝑋𝑖,
𝑛

∑
𝑖=1

𝜆′
𝑖𝑋𝑖⟩ ≡ 𝔼𝑃 [(

𝑛
∑
𝑖=1

𝜆𝑖𝑋𝑖) (
𝑛

∑
𝑖=1

𝜆′
𝑖𝑋𝑖)]

=
𝑛

∑
𝑖,𝑖′=1

𝜆𝑖𝜆′
𝑖′𝐾[𝑖, 𝑖′]

= (𝜆1, … , 𝜆𝑛)𝐾 ⎛⎜⎜
⎝

𝜆′
1
⋮

𝜆′
𝑛

⎞⎟⎟
⎠

= trace⎛⎜⎜
⎝

𝐾 ⎛⎜⎜
⎝

𝜆1
⋮

𝜆𝑛

⎞⎟⎟
⎠

( 𝜆′
1 … 𝜆′

𝑛 )⎞⎟⎟
⎠

.

Remark 16.2. Different Gaussian vectors may generate the same Gaussian space. Explain
how and why.

Gaussian spaces enjoy remarkable properties. Independence of random variables be-
longing to the same Gaussian space may checked very easily.

Proposition 16.9. Two random variables 𝑍 and 𝑌, belonging to the same Gaussian

space, are independent iff they are orthogonal (or decorrelated), that is iff

Cov𝑃[𝑌 , 𝑍] = 𝔼𝑃[𝑌 𝑍] = 0.

Without loss of generality, we assume covariance matrix 𝐾 is positive definite.

Proof. Independence always implies orthogonality.
Without loss of generality, we assume that the Gaussian space is generated by a standard

Gaussian vector, let 𝑍 = ∑𝑛
𝑖=1 𝜆𝑖𝑋𝑖 and 𝑌 = ∑𝑛

𝑖=1 𝜆′
𝑖𝑋𝑖.

If 𝑍 and 𝑌 are orthogonal (or non-correlated)

𝔼[𝑍𝑌 ] =
𝑛

∑
𝑖=1

𝜆𝑖𝜆′
𝑖 = 0.

To show that 𝑍 and 𝑌 are independent, it is enough to check that for all 𝜇 and 𝜇′ in ℝ

𝔼 [e𝚤𝜇𝑍e𝚤𝜇′𝑌] = 𝔼 [e𝚤𝜇𝑍] × 𝔼 [e𝚤𝜇′𝑌] .
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𝔼 [e𝚤𝜇𝑍e𝚤𝜇′𝑌] = 𝔼 [e𝚤𝜇 ∑𝑖 𝜆𝑖𝑋𝑖e𝚤𝜇′ ∑𝑖 𝜆′
𝑖𝑋𝑖]

= 𝔼 [
𝑛

∏
𝑖=1

e𝚤(𝜇𝜆𝑖+𝜇′𝜆′
𝑖)𝑋𝑖]

𝑋𝑖 are independent…

=
𝑛

∏
𝑖=1

𝔼 [e𝚤(𝜇𝜆𝑖+𝜇′𝜆′
𝑖)𝑋𝑖]

=
𝑛

∏
𝑖=1

e−(𝜇𝜆𝑖+𝜇′𝜆′
𝑖)2/2

= exp(−1
2

𝑛
∑
𝑖=1

𝜇2𝜆2
𝑖 + 2𝜇𝜇′𝜆𝑖𝜆′

𝑖 + 𝜇′2𝜆′2
𝑖 )

orthogonality

= exp(−1
2

𝑛
∑
𝑖=1

𝜇2𝜆2
𝑖 + 𝜇′2𝜆′2

𝑖 )

…

= 𝔼 [e𝚤𝜇𝑍] × 𝔼 [e𝚤𝜇′𝑌] .

The next proposition is a direct consequence.

Corollary 16.1. If 𝐸 and 𝐸′ are two linear sub-spaces of the Gaussian space generated

by the Gaussian vector with independent coordinates 𝑋1, … , 𝑋𝑛, the (Gaussian)

random variables belonging to subspace 𝐸 and the random (Gaussian) variables

belonging to the 𝐸′ space are independent if and only these two subspaces are orthog-

onal.

16.3 Convergence of Gaussian vectors

Recall the Lévy continuity theorem (Theorem 15.2)), it relates weak convergence for proba-
bility measures and simple convergence for characteristic functions.

Theorem 16.1. A sequence of probability distributions (𝑃𝑛)𝑛∈ℕ over ℝ𝑘 converges

weakly towards 𝑃 iff for every ⃗𝑠 ∈ ℝ𝑘:

𝔼𝑃𝑛
[e𝚤⟨ ⃗𝑠,𝑋⃗⟩] → 𝔼𝑃 [e𝚤⟨ ⃗𝑠,𝑋⃗⟩] .

For every ⃗𝑠 ∈ ℝ𝑘, functions ⃗𝑥 ↦ cos(⟨ ⃗𝑠, ⃗𝑥⟩) and ⃗𝑥 ↦ sin(⟨ ⃗𝑠, ⃗𝑥⟩) are continuous and
bounded, They are also infinitely many times differentiable.
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It is remarkable and useful that weak convergence can be checked on this small set of
functions.

Theorem 16.2 (Lévy-Continuity Theorem (bis)). A sequence of probability distribu-

tions (𝑃𝑛)𝑛∈ℕ sur ℝ𝑘 converges weakly towards a probability distribution iff there

exists a function 𝑓 over ℝ𝑘, continuous at ⃗0, such that for all ⃗𝑠 ∈ ℝ𝑘:

𝔼𝑃𝑛
[e𝚤⟨ ⃗𝑠,𝑋⃗⟩] → 𝑓( ⃗𝑠) .

Then, function 𝑓 is the characteristic function of some probability distribution 𝑃.

The continuity condition at 0 is necessary. The characteristic function of a probability
distribution is always continuous at 0. Continuity at 0warrants the tightness of the sequence
of probability distributions.

Proposition 16.10. If a sequence of 𝑘-dimensional Gaussian vectors (𝑋𝑛) is defined

by a ℝ𝑘-valued sequence ( ⃗𝜇𝑛)𝑛 and a SDP(𝑘)-valued sequence (𝐾𝑛)𝑛 and

lim
𝑛

⃗𝜇𝑛 = 𝜇 ∈ ℝ𝑘

lim
𝑛

𝐾𝑛 = 𝐾 ∈ SDP(𝑘)

then the sequence (𝑋𝑛)𝑛 converges in distribution towards 𝒩 ( ⃗𝜇, 𝐾) (if 𝐾 = 0, the
limit distribution is 𝛿𝜇).

16.4 Gaussian conditioning

Let (𝑋1, … , 𝑋𝑛)⊤ be a Gaussian vector with distribution 𝒩(𝜇, 𝐾) where 𝐾 ∈ DP(𝑛).
The covariance matrix 𝐾 is partitioned into blocks

𝐾 = [ 𝐴 𝐵⊤

𝐵 𝑊
]

where 𝐴 ∈ DP(𝑘), 1 ≤ 𝑘 < 𝑛, and 𝑊 ∈ DP(𝑛 − 𝑘).
We are interested in the conditional expectation of (𝑋1, … , 𝑋𝑘)⊤ with repsect to

𝜎(𝑋𝑘+1, … , 𝑋𝑛) and in the conditional distribution of (𝑋1, … , 𝑋𝑘)⊤ with respect to
𝜎(𝑋𝑘+1, … , 𝑋𝑛).

The Schur complement of 𝐴 in 𝐾 is defined as

𝑊 − 𝐵𝐴−1𝐵⊤ .

This definition makes sense for symmetric matrices when 𝐴 is non-singular.
If 𝐾 ∈ DP(𝑛) then the Schur complement of 𝐴 in 𝐾 also belongs to DP(𝑛 − 𝑘)
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In the statement of the next theorems, 𝐴−1/2 denotes the Cholesky factor of 𝐴−1:
𝐴−1 = 𝐴−1/2 × (𝐴−1/2)⊤.

Theorem 16.3. L’espérance conditionnelle de (𝑋𝑘+1, … , 𝑋𝑛)⊤ sachant

(𝑋1, … , 𝑋𝑘)⊤ est une transformation affine de (𝑋1, … , 𝑋𝑘)⊤:

𝔼 ⎡
⎢
⎣

⎛⎜⎜
⎝

𝑋𝑘+1
⋮

𝑋𝑛

⎞⎟⎟
⎠

∣
𝑋1
⋮

𝑋𝑘

⎤
⎥
⎦

= ⎛⎜⎜
⎝

𝜇𝑘+1
⋮

𝜇𝑛

⎞⎟⎟
⎠

+ (𝐵𝐴−1) × ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠

− ⎛⎜⎜
⎝

𝜇1
⋮

𝜇𝑘

⎞⎟⎟
⎠

⎞⎟⎟
⎠

.

Theorem 16.4. The conditional distribution of (𝑋𝑘+1, … , 𝑋𝑛)⊤ with respect to

𝜎(𝑋1, … , 𝑋𝑘) is a Gaussian distribution whose expectation is the conditional ex-

pectation (𝑋𝑘+1, … , 𝑋𝑛)⊤ with respect to 𝜎(𝑋1, … , 𝑋𝑘) and whose variance is the

Schur complement of the covariance of (𝑋1, … , 𝑋𝑘)⊤ in the covariance matrix of

(𝑋1, … , 𝑋𝑛)⊤.

Wewill first study the conditional density, and, with aminimum amount of calculation,
establish that it is Gaussian. Conditional expectation will be calculated as expectation under
conditional distribution.

To characterize conditional density, we rely on a distributional representation argument
(any Gaussian vector is distributed as the image of a standard Gaussian vector by an affine
transformation) and a matrix analysis result that is at the core of the Cholesky factorization
of positive semi-definite matrices.

(𝑋1, … , 𝑋𝑛)⊤ is distributed as the image of standard Gaussian vector by a block trian-
gular matrix

, et utiliser des propriétés des lois conditionnelles pour établir à la fois les deux résultats.

Proposition 16.11. Let 𝐾 be a symmetric definite positive matrix with dimensions

𝑛 × 𝑛

𝐾 = [ 𝐴 𝐵⊤

𝐵 𝑊
]

where 𝐴 has dimensions 𝑘 × 𝑘, 1 ≤ 𝑘 < 𝑛.
Then, the Schur-complement of 𝐴 with respect to 𝐾

𝑊 − 𝐵𝐴−1𝐵⊤

is positive definite. Sub-matrices 𝐴 and 𝑊 − 𝐵𝐴−1𝐵⊤ both have a Cholesky de-

composition $A = L_1 L_1^�,W - B A^{-1} B^�= L_2 L_2^�$ where 𝐿1, 𝐿2 are lower

triangular, and 𝐾’s factorization reads like:
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𝐾 = [ 𝐿1 0
𝐵(𝐿⊤

1 )−1 𝐿2
] × [ 𝐿⊤

1 𝐿−1
1 𝐵⊤

0 𝐿⊤
2

] .

Proof. Without loss of generality, we check the statement on centered vectors. TheCholesky
factorization of 𝐾 allows us to write

⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑛

⎞⎟⎟
⎠

∼ [ 𝐿1 0
𝐵(𝐿⊤

1 )−1 𝐿2
] × ⎛⎜⎜

⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

where (𝑌1, … , 𝑌𝑛)⊤ is a centered standard Gaussian vector.
In the sequel, we assume (𝑋1, … , 𝑋𝑛)⊤ and (𝑌1, … , 𝑌𝑛)⊤ live on the same probability

space. As 𝐿1 is invertible, the 𝜎-algebras generated by (𝑋1, … , 𝑋𝑘)⊤ and (𝑌1, … , 𝑌𝑘)⊤ are
equal. We agree on 𝒢 = 𝜎(𝑋1, … , 𝑋𝑘). The conditional expectations and conditional
distributions also coincide .

𝔼 ⎡
⎢
⎣

⎛⎜⎜
⎝

𝑋𝑘+1
⋮

𝑋𝑛

⎞⎟⎟
⎠

∣ 𝒢⎤
⎥
⎦

= 𝔼 ⎡
⎢
⎣

𝐵(𝐿⊤
1 )−1 ⎛⎜⎜

⎝

𝑌1
⋮

𝑌𝑘

⎞⎟⎟
⎠

∣ 𝒢⎤
⎥
⎦

+ 𝔼 ⎡
⎢
⎣

𝐿2
⎛⎜⎜
⎝

𝑌𝑘+1
⋮

𝑌𝑛

⎞⎟⎟
⎠

∣ 𝒢⎤
⎥
⎦

= 𝐵(𝐿⊤
1 )−1𝐿−1

1
⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠

= 𝐵𝐴−1 ⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠

,

car (𝑌𝑘+1, … , 𝑌𝑛)⊤ is centered and independent from 𝒢.
Note that residuals

⎛⎜⎜
⎝

𝑋𝑘+1
⋮

𝑋𝑛

⎞⎟⎟
⎠

− 𝔼 ⎡
⎢
⎣

⎛⎜⎜
⎝

𝑋𝑘+1
⋮

𝑋𝑛

⎞⎟⎟
⎠

∣ 𝒢⎤
⎥
⎦

= 𝐿2
⎛⎜⎜
⎝

𝑌𝑘+1
⋮

𝑌𝑛

⎞⎟⎟
⎠

are independent from 𝒢. This is a Gaussian property. For general square integrable
random variables, wemay only assert that residuals are orthogonal to 𝒢-measurable random
variables.

The conditional distribution of (𝑋𝑘+1, … , 𝑋𝑛)⊤ with respect to (𝑋1, … , 𝑋𝑘)⊤ coin-
cides with the conditional distribution of

𝐵(𝐿⊤
1 )−1 × ⎛⎜⎜

⎝

𝑌1
⋮

𝑌𝑘

⎞⎟⎟
⎠

+ 𝐿2 × ⎛⎜⎜
⎝

𝑌𝑘+1
⋮

𝑌𝑛

⎞⎟⎟
⎠

conditionally on (𝑌1, … , 𝑌𝑘)⊤. As (𝑌1, … , 𝑌𝑘)⊤ = 𝐿−1
1 (𝑋1, … , 𝑋𝑘)⊤, the conditional

distribution we are looking for is Gaussian with expectation

𝐵𝐴−1 × ⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠
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(the conditional expectation) and variance 𝐿2 × 𝐿⊤
2 = 𝑊 − 𝐵𝐴−1𝐵⊤.

Example 16.1. If (𝑋, 𝑌 )⊤ is a centered Gaussian vector with var(𝑋) = 𝜎2
𝑥, var(𝑌 ) = 𝜎2

𝑦
and cov(𝑋, 𝑌 ) = 𝜌𝜎𝑥𝜎𝑦, the conditional distribution of 𝑌 with respect to 𝑋 is

𝒩 (𝜌𝜎𝑦/𝜎𝑥𝑋, 𝜎2
𝑦(1 − 𝜌2)) .

The quantity 𝜌 is called the linear correlation coefficient between 𝑋 and 𝑌. By Cauchy-
Schwarz’s inequality, 𝜌 ∈ [−1, 1].

These two theorems are usually addressed in the order in which they are stated. Condi-
tional expectation is characterized by adopting the 𝐿2 (predictive) viewpoint: the condi-
tional expectation of the random vector 𝑌 knowing 𝑋 is defined as the best 𝑋-measurable
predictor of the vector𝑌with respect to quadratic error (the randomvector𝑍,𝑋-measurable
that minimizes 𝔼 [‖𝑌 − 𝑍‖2]).

In order to characterize conditional expectation, we first compute the optimal affine
predictor of (𝑋𝑘+1, … , 𝑋𝑛)⊤ based on (𝑋1, … , 𝑋𝑘)⊤. This optimal affine predictor is

⎛⎜⎜
⎝

𝜇𝑘+1
⋮

𝜇𝑛

⎞⎟⎟
⎠

+ (𝐵𝐴−1) × ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠

− ⎛⎜⎜
⎝

𝜇1
⋮

𝜇𝑘

⎞⎟⎟
⎠

⎞⎟⎟
⎠

,

(if Gaussian vectors are centred, this amounts to determine the matrix 𝑃 with dimen-
sions (𝑛 − 𝑘) × 𝑘 which minimizes trace(𝑃𝐴𝑃 ⊤ − 2𝐵𝑃 ⊤)). The optimal affine predictor
is a Gaussian vector, one can check that the residual vector

⎛⎜⎜
⎝

𝑋𝑘+1
⋮

𝑋𝑛

⎞⎟⎟
⎠

−
⎧{
⎨{⎩

⎛⎜⎜
⎝

𝜇𝑘+1
⋮

𝜇𝑛

⎞⎟⎟
⎠

+ (𝐵𝐴−1) × ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑋1
⋮

𝑋𝑘

⎞⎟⎟
⎠

− ⎛⎜⎜
⎝

𝜇1
⋮

𝜇𝑘

⎞⎟⎟
⎠

⎞⎟⎟
⎠

⎫}
⎬}⎭

is also Gaussian and orthogonal to the affine predictor. The residual vector is indepen-
dent from the affine predictor.

This is enough to establish that the affine predictor is the orthogonal projection
of (𝑋𝑘+1, … , 𝑋𝑛)⊤ on the closed linear subspace of square-integrable (𝑋1, … , 𝑋𝑘)⊤-
measurable random vectors.

This proves that the affine predictor is the conditional expectation.
In the notes, we deal with a special case of linear conditioning.
To fugure out general linear conditioning, consider𝑋 ∼ 𝒩(0, 𝐾) (we assume centering

to alleviate notation and computations, translating does not change the relevant 𝜎-algebras
and thus conditioning), where 𝐾 ∈ DP(𝑛), and a linear transformation defined by matrix
𝐻 with dimensions 𝑚 × 𝑛. 𝐻 is assumed to have rank 𝑚. Agree on 𝑌 = 𝐻𝑋. Considering
the Gaussian vector [𝑋⊤ ∶ 𝑌 ⊤] with covariance matrix

[ 𝐾 𝐾𝐻⊤

𝐻𝐾 𝐻𝐾𝐻⊤ ]
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and adapting the previous computations (the covariance matrix is not positive definite
anymore), wemay check that the conditional distribution of𝑋with respect to𝑌 is Gaussian
with expectation

𝐾𝐻⊤(𝐻𝐾𝐻⊤)−1

and variance

𝐾 − 𝐾𝐻⊤(𝐻𝐾𝐻⊤)−1𝐻𝐾 .

The linearity of conditional expectation is a property of Gaussian vectors and linear
conditioning. If you condition with respect to the norm ‖𝑋‖2, the conditional distribution
is not Gaussian anymore.

16.5 About Gamma distributions

Investigating the norm of Gaussian vectors will prompt us to introduce 𝜒2 distributions, a
sub-family of Gamma distributions.

Definition 16.4 (Gamma distributions). A Gamma distribution with parameters
(𝑝, 𝜆)} (𝜆 ∈ ℝ+ and 𝑝 ∈ ℝ+), is a distribution on (ℝ+, ℬ(ℝ+)) with density

𝑔𝑝,𝜆(𝑥) ≡ 𝜆𝑝

Γ(𝑝)
1𝑥≥0𝑥𝑝−1𝑒−𝜆𝑥

where Γ(𝑝) ≡ ∫∞
0

𝑡𝑝−1𝑒−𝑡d𝑡.
Parameter 𝑝 is called the shape parameter, 𝜆 is called the rate or intensity parameter,
1/𝜆 is called the scale parameter.

If 𝑋 ∼ Gamma(𝑝, 1) then 𝜎𝑋 ∼ Gamma(𝑝, 1/𝜎) for 𝜎 > 0.
Euler’s Γ() function interpolates the factorial. For every positive real 𝑝, Γ(𝑝 + 1) =

𝑝Γ(𝑝). If 𝑝 is integer, Γ(𝑝 + 1) = 𝑝!

Exercise 16.3. Check that Γ(1/2) =
√

𝜋.

Proposition 16.12. If 𝑋 ∼ Gamma(𝑝, 𝜆) 𝔼𝑋 = 𝑝
𝜆 and var(𝑋) = 𝑝

𝜆2 .

Thenext proposition is a cornerstone ofGamma-calculus. The sumof two independent
Gamma-distributed random variables is Gamma distributed if they have the same intensity
(or scale) parameter.

Proposition 16.13. If𝑋 and 𝑌 are independent Gamma-distributed random variables

with the same intensity parameter 𝜆 𝑋 ∼ Gamma(𝑝, 𝜆), 𝑌 ∼ Gamma(𝑞, 𝜆) then
𝑋 + 𝑌 ∼ Gamma(𝑝 + 𝑞, 𝜆).
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Proof. The density of the distribution of 𝑋 + 𝑌 is the convolution of the densities 𝑔𝑝,𝜆 et
𝑔𝑞,𝜆.

𝑔𝑝,𝜆 ∗ 𝑔𝑞,𝜆(𝑥) = ∫
ℝ

𝑔𝑝,𝜆(𝑧)𝑔
𝑞,𝜆

(𝑥 − 𝑧)d𝑧

= ∫
𝑥

0
𝑔𝑝,𝜆(𝑧)𝑔

𝑞,𝜆
(𝑥 − 𝑧)d𝑧

= ∫
𝑥

0

𝜆𝑝

Γ(𝑝)
𝑧𝑝−1e−𝜆𝑧 𝜆𝑞

Γ(𝑞)
(𝑥 − 𝑧)𝑞−1e−𝜆(𝑥−𝑧)d𝑧

= 𝜆𝑝+𝑞

Γ(𝑝)Γ(𝑞)
e−𝜆𝑥 ∫

𝑥

0
𝑧𝑝−1(𝑥 − 𝑧)𝑞−1d𝑧

changement de variable 𝑧 = 𝑥𝑢

= 𝜆𝑝+𝑞

Γ(𝑝)Γ(𝑞)
e−𝜆𝑥𝑥𝑝+𝑞−1 ∫

1

0
𝑢𝑝−1(1 − 𝑢)𝑞−1d𝑢

= 𝑔𝑝+𝑞,𝜆(𝑥) Γ(𝑝 + 𝑞)
Γ(𝑝)Γ(𝑞)

∫
1

0
𝑢𝑝−1(1 − 𝑢)𝑞−1d𝑢 .

We may pocket the next observation:

𝐵(𝑝, 𝑞) ∶= ∫
1

0
𝑢𝑝−1(1 − 𝑢)𝑞−1d𝑢

satisfies 𝐵(𝑝, 𝑞) = Γ(𝑝)Γ(𝑞)
Γ(𝑝+𝑞) .

Gamma distributions with parameters (𝑘/2, 1/2) for 𝑘 ∈ ℕ deserve to be named: they
are 𝜒2 distributions with 𝑘 degrees of freedom.

Proposition 16.14 (Chi-square distributions). The 𝜒2 distribution with 𝑘 degrees of

freedom (denoted by 𝜒2
𝑘) has density over [0, ∞),

𝑥 1
2 (𝑘−2)𝑒− 𝑥

2

2𝑘/2Γ(𝑘/2)
.

Proposition 16.15. The sum of 𝑘 independent squared standard Gaussian random

variables is distributed according to the chi-square distributions with 𝑘 degrees of

freedom 𝜒2
𝑘.

Proof. According to proposition Proposition 9.2), it suffices to establish the proposition
𝑘 = 1.

Let 𝑋 ∼ 𝒩(0, 1), for 𝑡 ≥ 0,

ℙ {𝑋2 ≤ 𝑡} = Φ(
√

𝑡) − Φ(−
√

𝑡)

= 2Φ(
√

𝑡) − 1 .
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Now, differentiating with respect to 𝑡, applying the chain rule provides us with a formula
for the density:

2 1
2
√

𝑡
𝜙(

√
𝑡) = 1√

2𝜋𝑡
e− 𝑡

2 = (1
2

)
1/2 𝑡−1/2

Γ(1/2)
e− 𝑡

2 .

16.6 Norms of centred Gaussian vectors

The distribution of the squared Euclidean norm of a centeredGaussian vector only depends
on the spectrum of its covariance matrix.

Theorem 16.5. If 𝑋 ∶= (𝑋1, 𝑋2, … , 𝑋𝑛)⊤ ∼ 𝒩 (0, 𝐴) with 𝐴 = 𝐿𝐿⊤ (𝐿 lower

triangular), if 𝑀 ∈ SDP(𝑛), then 𝑋⊤𝑀𝑋 is distributed like ∑𝑛
𝑖=1 𝜆𝑖𝑍𝑖 where

(𝜆𝑖)𝑖∈{1,…,𝑛} denote the eigenvalues of 𝐿⊤ × 𝑀 × 𝐿 and where 𝑍𝑖 are independent

𝜒2
1-distributed random variables.

This is a corollary of an important property of standard Gaussian vectors: rotational
invariance. The standard Gaussian distribution is invariant under orthogonal transform (a
matrix 𝑂 is orthogonal iff 𝑂𝑂⊤ = Id).

Proof. Matrix 𝐴 may be factorized as 𝐴 = 𝐿𝐿⊤ (Cholesky), and 𝑋 is distributed like
𝐿𝑌 where 𝑌 is standard Gaussian. The quadratic form 𝑋⊤𝑀𝑋 is thus distributed like
𝑌 ⊤𝐿⊤𝑀𝐿𝑌. There exist an orthogonal transform 𝑂 such that 𝐿⊤𝑀𝐿 = 𝑂⊤ diag(𝜆𝑖)𝑂.
Random vector 𝑂𝑌 is distributed like 𝒩(0, 𝐼𝑛).

16.7 Norm of non-centred Gaussian vectors

The distribution of the squared norm of a Gaussian vector with covariance matrix 𝜎2 Id
depends on the norm of the expectation but does not depend on its direction. In addition,
this distribution stochastically can be compared with the distribution of the squared norm
of a centred Gaussian vector with the same covariance.

Definition 16.5 (ordering). In a probability space endowed with distribution ℙ, a
real random variable 𝑋 is stochastically smaller than random variable 𝑌, if

ℙ{𝑋 ≤ 𝑌 } = 1 .

The distribution of 𝑌 is said to stochastically dominate the distribution of 𝑋.

If 𝑋 is stochastichally less than 𝑌 and if 𝐹 and 𝐺 denote the cumulative distribution
functions of 𝑋 and 𝑌, then for all 𝑥 ∈ ℝ, 𝐹(𝑥) ≥ 𝐺(𝑥). Quantile functions 𝐹 ←, 𝐺← satisfy
𝐹 ←(𝑝) ≤ 𝐺←(𝑝) for 𝑝 ∈ (0, 1).
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Conversely.

Proposition 16.16. If 𝐹 and 𝐺 are two cumulative distribution functions that satisfy

∀𝑥 ∈ ℝ 𝐹(𝑥) ≥ 𝐺(𝑥) then there exists a probability space equipped with a probability
distribution ℙ and two random variables 𝑋 and 𝑌 with cumulative distribution

functions 𝐹, 𝐺 that satisfy:

ℙ{𝑋 ≤ 𝑌 } = 1 .

The proof proceeds by a quantile coupling argument.

Proof. It is enough to endow ([0, 1], ℬ([0, 1]) with the uniform distribution. Let 𝑋(𝜔) =
𝐹 ←(𝜔), 𝑌 (𝜔) = 𝐺←(𝜔). Then the distribution of 𝑋 (resp. 𝑌) has cumulative distribution
function 𝐹 (resp. 𝐺) and the following holds:

ℙ{𝑋 ≤ 𝑌 } = ℙ{𝐹 ←(𝑈) ≤ 𝐺←(𝑈)} = 1 .

Theorem 16.6. If 𝑋 ∼ 𝒩 (0, 𝜎2 Id) and 𝑌 ∼ 𝒩 (𝜃, 𝜎2 Id) with 𝜃 ∈ ℝ𝑑 then

‖𝑌‖2 ∼ ((𝑍1 + ‖𝜃‖2)2 +
𝑑

∑
𝑖=1

𝑍2
𝑖 )

where 𝑍𝑖 are i.i.d. according to 𝒩(0, 𝜎2).
For every 𝑥 ≥ 0,

ℙ {‖𝑌 ‖ ≤ 𝑥} ≤ ℙ {‖𝑋‖ ≤ 𝑥} .

The distribution of ‖𝑌 ‖2/𝜎2 (non-centred 𝜒2 with parameter ‖𝜃‖2/𝜎) stochastichally
dominates the distribution of ‖𝑋‖2/𝜎2 (centred 𝜒2 with the same number of degrees

of freedom).

Proof. TheGaussian vector𝑌 is distributed like 𝜃+𝑋. There exists an orthogonal transform
𝑂 such that

𝑂𝜃 =
⎛⎜⎜⎜⎜
⎝

‖𝜃‖2
0
⋮
0

⎞⎟⎟⎟⎟
⎠

.

Vectors 𝑂𝑌 and 𝑂𝑋 respectively have the same norms as 𝑋 and 𝑌.
The squared norm of 𝑌 is distributed as the squared norm of 𝑂𝑌, that is like (𝑍1 +

‖𝜃‖2)2 + ∑𝑑
𝑖=2 𝑍2

𝑖 . This proves the first part of the theorem.
To establish the second part of the theorem, it suffices to check that for every 𝑥 ≥ 0,

ℙ {(𝑍1 + ‖𝜃‖2)2 ≤ 𝑥} ≤ ℙ {𝑋2
1 ≤ 𝑥} ,
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that is

ℙ {|𝑍1 + ‖𝜃‖2| ≤
√

𝑥} ≤ ℙ {|𝑋1| ≤
√

𝑥} ,

or
Φ(

√
𝑥 − ‖𝜃‖2) − Φ(−

√
𝑥 − ‖𝜃‖2) ≤ Φ(

√
𝑥) − Φ(−

√
𝑥) .

For 𝑦 > 0, the functionmapping [0, ∞) to ℝ, defined by 𝑎 ↦ Φ(𝑦 − 𝑎) − Φ(−𝑦 − 𝑎) is
non-increasing with respect to 𝑎: it derivative with respect to 𝑎 equals −𝜙(𝑦 − 𝑎) + 𝜙(−𝑦 −
𝑎) = 𝜙(𝑦 + 𝑎) − 𝜙(𝑦 − 𝑎) ≤ 0. The conclusion follows

The last step of the proof reads as

ℙ {𝑋 ∈ 𝜃 + 𝐶} ≤ ℙ {𝑋 ∈ 𝐶}

where𝑋 ∼ 𝒩(0, Id1), 𝜃 ∈ ℝ and𝐶 = [−
√

𝑥,
√

𝑥]. This inequality holds in dimension
𝑑 ≥ 1 if 𝐶 is compact, convex, symmetric. This (subtle) result is called Anderson’s Lemma.

16.8 Cochran Theorem and consequences

Theorem 16.7 (Cochran). Let 𝑋 ∼ 𝒩(0, I𝑛) and ℝ𝑛 = ⊕𝑘
𝑗=1𝐸𝑗 where 𝐸𝑗 are

pairwise orthogonal linear subspaces of ℝ𝑛. Denote by 𝜋𝐸𝑗
the orthogonal projection

on 𝐸𝑗.

The collection of Gaussian vectors (𝜋𝐸𝑗
𝑋)

𝑗≤𝑘
is independent and for each~𝑗

‖𝜋𝐸𝑗
𝑋‖2

2 ∼ 𝜒2
dim(𝐸𝑗) .

Proof. The covariance matrix of 𝜋𝐸𝑗
𝑋 is 𝜋𝐸𝑗

𝜋⊤
𝐸𝑗

= 𝜋𝐸𝑗
. The eigenvalues of 𝜋𝐸𝑗

are 1 with
multiplicity dim(𝐸𝑗) and 0. The statement about the distribution of ‖𝜋𝐸𝑗

𝑋‖2
2 is a corollary

of ?@prp-normgaussstand and ?@prp-normespectre.
To prove stochastic independence, let us consider ℐ, 𝒥 ⊂ {1, … , 𝑘} with ℐ ∩ 𝒥 = ∅. It

is enough to check that for all (𝛼)𝑗∈ℐ, (𝛽𝑗)𝑗∈𝒥, the characteristic functions of

(∑
𝑗∈ℐ

⟨𝛼𝑗, 𝜋𝐸𝑗
𝑋⟩, ∑

𝑗∈𝒥
⟨𝛽𝑗, 𝜋𝐸𝑗

𝑋⟩)

can be factorized. It suffices to check that the two Gaussians are orthogonal.

𝔼 [(∑
𝑗∈ℐ

⟨𝛼𝑗, 𝜋𝐸𝑗
𝑋⟩) × (∑

𝑗′∈𝒥
⟨𝛽𝑗′ , 𝜋𝐸𝑗′ 𝑋⟩)] = ∑

𝑗∈ℐ,𝑗′∈𝒥
𝛼⊤

𝑗 𝜋𝐸𝑗
𝜋𝐸𝑗′ 𝛽𝑗′ = 0 .

The next result is a cornerstone of statistical inference in Gaussian models. It is a
corollary of Cochran’s Theorem.
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Theorem 16.8 (Student).
Of (𝑋1, … , 𝑋𝑛) are i.i.d. according to 𝒩(𝜇, 𝜎2), if 𝑋𝑛 ∶= ∑𝑛

𝑖=1 𝑋𝑖/𝑛 et 𝑉 ∶=
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋𝑛)2, then

1. 𝑋𝑛 is distributed according to 𝒩(𝜇, 𝜎2/𝑛),

2. 𝑉 is independent from 𝑋𝑛

3. 𝑉 /𝜎2 is distributed according to 𝜒2
𝑛−1.

Proof. Without loss of generality, we may assume that 𝜇 = 0 et 𝜎 = 1.
As

⎛⎜⎜
⎝

𝑋𝑛
⋮

𝑋𝑛

⎞⎟⎟
⎠

= 1
𝑛

⎛⎜⎜
⎝

1
⋮
1

⎞⎟⎟
⎠

× (1 … 1) 𝑋

the vector (𝑋𝑛, … , 𝑋𝑛)⊤ is the orthogonal projection of the standard Gaussian vector 𝑋
on the line generated by (1, … , 1)⊤.

Vector (𝑋1 − 𝑋𝑛, … , 𝑋𝑛 − 𝑋𝑛)⊤ is the orthogonal projection fo Gaussian vector 𝑋
on the hyperplane which is orthogonal to (1, … , 1)⊤.

According to Cochran’s Theorem (Section 16.8), random vectors (𝑋𝑛, … , 𝑋𝑛)⊤, and
(𝑋1 − 𝑋𝑛, … , 𝑋𝑛 − 𝑋𝑛)⊤ are independent.

The distribution of 𝑋𝑛 is trivially Gaussian.
The distribution of 𝑉 is characterized using Cochran’s Theorem.

Definition 16.6 (Distribution). If 𝑋 ∼ 𝒩(0, 1), 𝑌 ∼ 𝜒2
𝑝 and if 𝑋 and 𝑌 are indepen-

dent, then𝑍 = 𝑋/√𝑌 /𝑝 is distributed according to a (centred) Student distribution
with 𝑝 degrees of freedom.

16.9 Gaussian concentration

The very definition of Gaussian vectors characterizes he distribution of any affine function
of a standard Gaussian vector. If the linear part of the affine function is defined by a vector
𝜆, we know that the variance will be ‖𝜆‖2

2. What happens if we are interested in fairly
regular functions of a standard Gaussian vector? for example if we consider 𝐿-lipschitzian
functions? These are generalizations of affine functions. We cannot therefore expect a
general increase in the variance of the 𝐿-Lipschitzian functions of a standard Gaussian
vector better than 𝐿2 (in the linear case the Lipschitz constant is the Euclidean norm of
𝜆). It is remarkable that the bound provided for linear functions extends to Lipschitzian
functions. It is even more remarkable that this bound does not involve the dimension of
the ambient space.
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Theorem 16.9. Let 𝑋 ∼ 𝒩(0, Id𝑑).

� if 𝑓 is differentiable on ℝ𝑑,

var(𝑓(𝑋)) ≤ 𝔼‖∇𝑓‖2 (Poincaré’s inequality)

� if 𝑓 is 𝐿-Lipschitz on ℝ𝑑,

var(𝑓(𝑋)) ≤ 𝐿2

and for 𝜆 > 0

log𝔼e𝜆(𝑓(𝑋)−𝔼𝑓) ≤ 𝜆2𝐿2

2
.

For every 𝑡 ≥ 0,

ℙ {𝑓(𝑋) − 𝔼𝑓(𝑋) ≥ 𝑡} ≤ e− 𝑡2
2𝐿2 .

The proof relies on the next identity.

Proposition 16.17 (Covariance identity). Let 𝑋, 𝑌 be two independent ℝ𝑑-valued

standard Gaussian vectors, let 𝑓, 𝑔 be two differentiable functions from ℝ𝑑 to ℝ.

cov(𝑓(𝑋), 𝑔(𝑋)) = ∫
1

0
𝔼 ⟨∇𝑓(𝑋), ∇𝑔 (𝛼𝑋 +

√
1 − 𝛼2𝑌)⟩ d𝛼

We start by checking this proposition on functions 𝑥 ↦ e𝚤⟨𝜆,𝑥⟩, 𝑥 ∈ ℝ𝑑.

Proof. Let us first check Poincaré’s inequality.
We choose 𝑓 = 𝑔. Starting from the covariance identity, thanks to Cauchy-Schwarz’s

inequality:

var(𝑓(𝑋)) = cov(𝑓(𝑋), 𝑓(𝑋))

= ∫
1

0
𝔼 ⟨∇𝑓(𝑋), ∇𝑓 (𝛼𝑋 +

√
1 − 𝛼2𝑌)⟩ d𝛼

≤ ∫
1

0
(𝔼‖∇𝑓(𝑋)‖2)1/2 × (𝔼‖∇𝑓 (𝛼𝑋 +

√
1 − 𝛼2𝑌) ‖2)

1/2
d𝛼 .

The desired results follows by noticing that 𝑋 and 𝛼𝑋 +
√

1 − 𝛼2𝑌 are both 𝒩(0, Id)-
distributed.

To obtain the exponential inequality, choose 𝑓 differentiable and 1-Lipschitz, and 𝑔 =
exp(𝜆𝑓) pour 𝜆 ≥ 0. Without loss of generality, assume 𝔼𝑓(𝑋) = 0. The covariance
identity and the chain rule imply
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cov (𝑓(𝑋), e𝜆𝑓(𝑋)) = 𝜆 ∫
1

0
𝔼 [⟨∇𝑓(𝑋), ∇𝑓 (𝛼𝑋 +

√
1 − 𝛼2𝑌)⟩ e𝜆𝑓(𝛼𝑋+

√
1−𝛼2𝑌)] d𝛼

≤ 𝜆𝐿2 ∫
1

0
𝔼 [e𝜆𝑓(𝛼𝑋+

√
1−𝛼2𝑌)] d𝛼

= 𝜆𝐿2𝔼 [e𝜆𝑓(𝑋)]

Define 𝐹(𝜆) ∶= 𝔼 [e𝜆𝑓(𝑋)]. Note that we have just established a differential inequality
for 𝐹, checking cov(𝑓, e𝜆𝑓) = 𝐹 ′(𝜆) since 𝑓 is centred:

𝐹 ′(𝜆) ≤ 𝜆𝐿2𝐹(𝜆) .

Solving this differential inequality under 𝐹(0) = 1, for 𝜆 ≥ 0

𝐹(𝜆) ≤ e𝜆2𝐿2
2 .

The same approach works for 𝜆 < 0. It is enough to invoke Markov’s exponential
inequality and to optimize with respect to 𝜆 = 𝑡/𝐿2.

Concentration inequalities describe the behavior of the norm of high-dimensional
Gaussian vectors.

Corollary 16.2. If 𝑋 is a standard 𝑑-dimensional Gaussian vector, then

var(‖𝑋‖2) ≤ 1

and √
𝑑 − 1 ≤ 𝔼‖𝑋‖2 ≤

√
𝑑 .

Proof. The Euclidean norm is 1-Lipschitz (triangle inequality). The first inequality follows
fron Poincaré’s inequality.

The upper bound on expectation follows from Jensen’s inequality.
The lower bound on expectation follows from (𝔼‖𝑋‖2)2 = 𝔼‖𝑋‖2

2 − var(‖𝑋‖2) =
𝑑 − var(‖𝑋‖2) and from the variance upper bound.

Exercise 16.4. Let 𝑋 ∼ 𝒩(0, 𝐾) where 𝐾 is in DP(𝑑) and 𝑍 = max𝑖≤𝑑 𝑋𝑖.
Show

Var(𝑍) ≤ max
𝑖≤𝑑

𝐾𝑖,𝑖 ∶= max
𝑖≤𝑑

Var(𝑋𝑖).

Exercise 16.5. Let 𝑋, 𝑌 ∼ 𝒩(0, Id𝑛) with 𝑋, 𝑌 indépendent.
Show

√
2𝑛 − 1 ≤ 𝔼[‖𝑋 − 𝑌 ‖] ≤

√
2𝑛
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and

ℙ {‖𝑋 − 𝑌 ‖ − 𝔼[‖𝑋 − 𝑌 ‖] ≥ 𝑡} ≤ e−𝑡2 .

16.10 Bibliographic remarks

Gaussian literature is very abundant, see for example (?). Much of this literature is relevant
to statistics.

The lemmas ?@lem-stein and ?@lem-steinbis that characterize the Gaussian standard
are the starting point of Stein’s (Charles) method to demonstrate the central limit theorem
(and many other results). This relatively recent development is described in (N. Ross, 2011).

Matrix analysis and algorithmics play an important role in Gaussian analysis and statis-
tics. The books (Horn& Johnson, 1990), and if wewish to go further (Bhatia, 1997), provide
an introduction to the concepts and techniques of matrix factorization and elements of
perturbation theory.

There is amulti-dimensional version of the laws of𝜒2 that appearwhen determining the
law of variance empirical. These are the laws of Wishart. They were the subject of intensive
studies in random matrix theory, see for example (Anderson, Guionnet, & Zeitouni, 2010)

Gaussian concentration plays an important role in non-parametric statistics and is a
source of inspiration in statistical learning. M. Ledoux’s book (Ledoux, 2001) provides an
elegant perspective on this issue.

Anderson, G.W., Guionnet, A., &Zeitouni, O. (2010). An introduction to randommatrices

(Vol. 118). Cambridge: Cambridge University Press.
Bhatia, R. (1997). Matrix analysis. Springer-Verlag.
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versity Press.
Chen, L. H. Y., Goldstein, L., & Shao, Q.-M. (2011). Normal approximation by Stein’s

method (p. xii+405). Springer, Heidelberg. https://doi.org/10.1007/978-3-642-15007-4
Cover, T., & Thomas, J. (1991). Elements of information theory. John Wiley & sons.
Dudley, R. M. (2002). Real analysis and probability (Vol. 74, p. x+555). Cambridge:

Cambridge University Press.
Durrett, R. (2010). Probability: Theory and examples. Cambridge University Press.
Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex analysis and minimization algo-

rithms. I (Vol. 305, p. xviii+417). Springer-Verlag, Berlin.
Horn, R. A., & Johnson, C. R. (1990). Matrix analysis. Cambridge University Press.
Ledoux, M. (2001). The concentration of measure phenomenon. AMS.
Massart, P. (2007). Concentration inequalities and model selection. Ecole d’eté de probabilité

de saint-flour xxxiv (Vol. 1896). Springer-Verlag.
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& B. Reed (Eds.), Probabilistic methods for algorithmic discrete mathematics (pp.
195–248). Springer, New York.

ma1ay010 192 m1 isifar

https://doi.org/10.1007/978-3-642-15007-4


16.10. BIBLIOGRAPHIC REMARKS

Pollard, D. (2002). A user’s guide to measure theoretic probability (Vol. 8, p. xiv+351).
Cambridge University Press, Cambridge.

Ross, N. (2011). Fundamentals of Stein’s method. ArXiv e-Prints. Retrieved from https:
//arxiv.org/abs/1109.1880

Ross, Nathan. (2011). Fundamentals of Stein’s method. Probab. Surv., 8, 210–293. https:
//doi.org/10.1214/11-PS182

Widder, D. V. (2015). Laplace transform (PMS-6). Princeton university press.
Wilf, H. S. (2005). Generatingfunctionology. AK Peters/CRC Press.
Williams, D. (1991). Probability with martingales (p. xvi+251). Cambridge University Press,

Cambridge. https://doi.org/10.1017/CBO9780511813658

m1 isifar 193 ma1ay010

https://arxiv.org/abs/1109.1880
https://arxiv.org/abs/1109.1880
https://doi.org/10.1214/11-PS182
https://doi.org/10.1214/11-PS182
https://doi.org/10.1017/CBO9780511813658



	Table of contents
	Warm up
	A short undergraduate course on Probability theory in an applied mathematics curriculum
	Prerequisites

	Introduction
	Hashing
	A Probability space
	Random variables and independence
	Convergences
	Summary

	A modicum of measure theory
	Roadmap
	Universe, powerset and \sigma-algebras
	Generated \sigma-algebra

	Probability distributions
	Lebesgue measure
	Measurable functions and random variables
	The Monotone class theorem
	Probability distributions on the real line
	General random variables
	Bibliographic remarks

	A modicum of integration
	Roadmap
	Simple functions
	Integration
	Limit theorems
	Probability distributions defined by a density
	Bibliographic remarks

	From integrals to expectation and moments
	Roadmap
	Expectation
	Jensen's inequality
	Variance
	Higher moments
	Median and interquartile range
	\mathcal{L}_p and L_p spaces
	Bibliographical remarks

	Families of discrete distributions
	Bernoulli and Binomial
	Poisson
	Geometric

	Characterizations of discrete probability distributions
	Motivation
	Probability generating function
	Inversion formula
	Sums of independent random variables and probability generating fuunctions
	Smoothness and integrability

	Product distributions
	Product \sigma-algebras
	Product measures
	Tonelli-Fubini theorem
	Joint distributions, independence and product distributions
	Independence of collections of \sigma-algebras
	Infinite product spaces
	Bibliographic remarks

	Independence and product spaces
	Roadmap
	Independence of two events
	Independence of two events

	Independence of \sigma-algebras and random variables
	Independence of \sigma-algebras


	Absolutely continuous probability measures
	Densities and absolute continuity
	Exponential distribution
	Gamma distribution
	Univariate Gaussian distributions
	Cumulative distribution functions and absolute continuity
	Computing the density of an image probability distribution
	Application: Gamma-Beta calculus
	Bibliographic remarks

	Discrete Conditioning
	Roadmap
	Conditioning with respect to an event
	Bayes formula
	Conditional expectation with respect to a discrete \sigma-algebra
	Conditional expectation as prediction
	Properties of conditional expectation
	Application: Galton-Watson processes I

	Conditioning
	Defining conditional expectation
	Conditional expectation in \mathcal{L}_2(\Omega, \mathcal{F}, P)
	Conditional expectation in \mathcal{L}_1 (\Omega, \mathcal{F}, P)
	Properties of (general) conditional expectation
	Conditional convergence theorems
	Dominated convergence
	Jensen's inequality
	Independence

	Conditional probability distributions
	Easy case: conditioning with respect to a discrete \sigma-algebra
	Impediments
	Joint density setting
	Regular conditional probabilities, kernels
	Conditional probability kernel
	Regular conditional probability
	Existence of regular conditional probability distributions when \Omega =\mathbb{R}

	Efron-Stein-Steele inequalities
	Bounded differences inequalities
	Bounded differences inequalities

	Bibliographic remarks

	Characterizations of probability distributions
	Motivation
	Laplace transform
	Definition and elementary properties
	Injectivity of Laplace transforms and an inversion formula
	Laplace transform smoothness and integrability

	Characteristic functions and Fourier transforms
	Characteristic function
	Characteristic function of a univariate Gaussian distribution
	Sums of independent random variables and convolutions
	Injectivity Theorem and inversion formula
	Differentiability and integrability
	Another application: understanding Cauchy distribution

	Bibliographic remarks

	Quantile functions
	Definition
	Quantile functions and stochastic simulation
	Order statistics
	Bibliographical remarks

	Convergences I : almost sure, L_2, L_1, in Probability
	Motivations
	Almost sure convergence
	Convergence in L_p
	Convergence in probability
	Weak law of large numbers
	Strong law of large numbers
	Exponential inequalities
	Hoeffding's Lemma

	Bibliographic remarks

	Convergence in distribution
	Motivation
	Weak convergence, vague convergence
	Convergence in distribution
	Portemanteau Theorem
	Lévy continuity theorem
	Refining the continuity theorem
	Relations between convergences
	Central limit theorem
	Cramer-Wold device
	Weak convergence and transforms
	Bibliographic remarks

	Gaussian vectors
	Univariate Gaussian distribution
	Gaussian vectors
	Convergence of Gaussian vectors
	Gaussian conditioning
	About Gamma distributions
	Norms of centred Gaussian vectors
	Norm of non-centred Gaussian vectors
	Cochran Theorem and consequences
	Gaussian concentration
	Bibliographic remarks


